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Abstract—Studies show that artificial intelligence (AI) with
embedded physics solvers has improved the accuracy of pre-
dictions on various physics problems, especially those associated
with fluid dynamics. The crucial element in optimizing weight
training for estimating flow fields within the AI network lies
in the choice of the loss function. In addressing regression-type
problems, particularly those involving the temporal evolution
of flow fields, the mean square error (MSE) loss function is
commonly employed at the current and single time step. However,
an issue arises in existing methodologies that utilize MSE-based
loss functions with single-time step information for predicting
unsteady flow. Most of these approaches overlook the significance
of incorporating the temporal history of the flow, a factor
that cannot be disregarded in the context of numerical solvers.
Hence, in this work, a physics-based AI (PbAI) method with
higher-order loss functions is applied to unsteady scenarios, in
particular to two distinct turbulent flows where a multitude of
fine structures is present, namely, forced and decaying turbulence.
Direct numerical simulations on uniform Cartesian grids are
conducted to simulate these scenarios, generating two distinct
datasets for training and inference. Each dataset comprises 32
randomly initialized conditions spanning 4,848 time steps for
each turbulent flow type. Five distinct models are devised, incor-
porating features such as rollouts from coarse numerical solvers
and temporal considerations in the loss function calculation. The
constructed PbAI models demonstrate consistent improvements
in predictive performance over the entire temporal domain. These
findings are further corroborated through vorticity correlation
analyses. The empirical result demonstrates that the accuracy of
the baseline case improves by up to 48% and 30% for forced
and decaying turbulence, respectively. These results significantly
underscore the importance of the temporal histories of flow in
the loss function in enhancing predictive capabilities for complex
and unsteady turbulent flows.

Index Terms—Iloss functions, unsteady simulations, turbulence,
physics-based Al

I. INTRODUCTION

Deep learning has recently gained attention for its potential
in predicting physical systems [1], thereby offering an alter-
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native method in the field of computational fluid dynamics
(CFD). The fluid flows and dynamics are governed by the
Navier Stokes (NS) equations, a set of partial differential
equations (PDEs), that can be solved directly using direct
numerical simulation (DNS) [2], large-eddy simulation (LES)
[3], or Reynolds-averaged Navier Stokes (RANS) [4], ordered
in decreasing computational demand. Fine grids and small time
steps are often required for obtaining high-fidelity solutions,
which incur enormous computational costs and the simula-
tion may become intractable. Thus, deep learning becomes
an alternative tool to reduce computational resources while
maintaining accuracy.

Most works that leverage different types of deep learning
methods in various physical systems, such as fluid dynamics
[5, 6, 7], solid mechanics [8, 9], chemical mixing [10],
combustion [11], and weather forecasting [12], focus on ac-
celerating the simulation process through super-resolution [5],
improving LES or RANS modeling [6, 7, 13, 14, 15], training
the closure models [11, 16], and embedding physical laws into
neural networks [7, 17, 18, 19].

Many works have shown the capability of deep learning
in reducing the conventional simulation cost. Reference [5]
studies the correlation between high (DNS or LES) and low-
resolution simulations and showcases the capability of convo-
lutional neural networks (CNN) in achieving excellent accu-
racy with coarser mesh while promising substantial computa-
tional cost reduction. Their work, however, requires structured
grids due to the use of CNN and large dataset inputs (high-
resolution simulation). Another work [6] embeds the trained
CNN in RANS simulation to accelerate the convergence speed.
This method shows promising results but is limited to steady
flow problems, while most engineering applications involve
unsteady flows. References [11, 15, 16] have used supervised
learning with high-fidelity datasets to train models to represent
the unresolved small scales for turbulence closure.

The selection of an appropriate loss function plays a piv-
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otal role in training neural networks to accurately model
complex relationships within data. Loss functions quantify
the disparity between predicted outputs and actual ground
truth labels, thereby guiding the optimization process during
model training. One commonly employed loss function is
the mean squared error (MSE), which calculates the average
squared difference between predicted and actual values. This
loss is often suitable for regression tasks. For classification
problems, cross-entropy loss [20], including binary and cate-
gorical variants, is widely used. It evaluates the dissimilarity
between predicted probability distributions and actual class
distributions. The hinge loss [21], employed in support vector
machines and popularized in the context of deep learning with
linear support vector machines, is commonly applied to binary
classification tasks. Additionally, specialized loss functions
such as Huber loss [22] and the Kullback-Leibler divergence
[23] serve specific purposes, addressing issues like robustness
to outliers and probability distribution divergence, respectively.

The choice of a loss function depends on the specific charac-
teristics of the task, the desired model behavior, and the nature
of the data. In the context of fluid dynamics, MSE-based loss
functions [5, 9, 8, 7] are commonly employed regardless of
the flow type or regime. The MSE-based loss function, owing
to its summation of pointwise errors, adeptly captures spatial
discrepancies within flow fields. However, the limitation of
MSE-based loss functions becomes evident in their failure
to adequately encapsulate temporal changes when exclusively
minimizing current time-step flow fields [5, 8]. To address
this shortfall, novel loss functions incorporating information
from past and/or future flow fields have been proposed. The
integration of temporal context enables the network to discern
temporal evolution trends, thereby enhancing overall predictive
performance. Five MSE-based loss functions are proposed
to use either coarse field output from a numerical solver
or fields from different time steps based on a backward or
central difference scheme in order to investigate the influence
of different loss functions on predicting unsteady flow type
simulations.

The rest of the paper is organized as follows: Section II
describes the dataset preparation for training and testing.
Section III proposes five different loss functions. Section IV
reports the experimental results and comparisons. Finally,
Section V draws conclusions and discusses limitations.

II. SIMULATION PARAMETERS AND DATASETS

In this work, a comprehensive numerical solver, JAX-CFD
[5], is employed to facilitate data generation and as the initial
step in constructing the machine learning models. The solver
incorporates a staggered square mesh structure within a finite
volume framework. The computational domain is discretized
into distinct computational cells, where the velocity field is
assigned to the edges, while the pressure is determined at the
cell centers. Rather than utilizing a spectral method, a real-
space formulation of the NS equations is solved for its superior
adaptability in accommodating boundary conditions.
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The incompressible fluid (i.e., density, p, is constant) is
governed by the NS equation and takes the following form,

vV-U=0,
ou
ot
where U, p, v, and f represent the velocity vector, pressure,
kinematic viscosity of the fluid, and external forcing vector
term, respectively. The diffusion term, denoted as the second
term on the right-hand side of (1b), is treated implicitly,
utilizing a second-order central difference scheme to discretize
the Laplace operator. Simultaneously, the convection term,
represented by the first term on the right-hand side of (1b),
is solved by advecting all velocity components utilizing a
high-order scheme based on the Van-Leer flux limiter [24].
Additionally, the Poisson equation is solved at each time
step to determine the pressure field. To achieve this, a fast
diagonalization approach is employed, utilizing explicit matrix
multiplication [25].

To replicate the statistical properties of fully developed
turbulent flows, Kolmogorov force [26] is introduced as an
external force term in (1b). The Kolmogorov force is defined
as follows,

(1a)
1
= —(U-V)U+vV?U — ;Vp—l— f, (Ib)

f= (far s fy) = (KSiH(k‘y) s 0) ) 2)

where K represents the Kolmogorov scale, and k denotes
the forcing wavenumber. It is important to note that an
additional linear forcing proportional to the velocity is incor-
porated, introducing a negative coefficient to prevent energy
from accumulating solely in large vortices. This forcing term
exhibits statistical homogeneity and isotropy while adhering
to a power-law distribution in the wavenumber space. The
incorporation of Kolmogorov forcing within numerical sim-
ulations enables the study of turbulence and its statistical
behaviors under controlled conditions, where parameters such
as the magnitude K and the wavenumber k can be adjusted
accordingly.

Two types of Kolmogorov flow simulations are gener-
ated for datasets, namely forced and decaying turbulence,
specifically at a Reynolds number (Re) of 1000, within a
two-dimensional domain size of [27 x 27]. The process of
generating the datasets encompasses three distinct steps: (i)
initiating a burn-in simulation from a random initial condition;
(ii) conducting a simulation for a predetermined duration using
a high-resolution solver; and (iii) downsampling the obtained
solution to a lower-resolution grid for subsequent training and
testing of the model.

During the burn-in stage, the initial condition is defined
by several key parameters, namely the random seed number,
resolution, and initial peak wavenumber. The initial peak
wavenumber corresponds to the peak wavenumber of the
log-normal distribution utilized for sampling random initial
conditions. To ensure the reliability of the subsequent analysis,
the initial transient results are disregarded, and the duration of
this burn-in phase is determined by the maximum amplitude of
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TABLE I
PARAMETERS USED IN THE DATASET GENERATION.

Types of Turbulence
Datasets

initial peak wavenumber
number of initial conditions
burn-in time

simulation time [s]

Forced | Decaying
Train [ Test | Train | Test

32
40 [ 45
34

2048 x 2048

simulation resolution

save resolution 64 x 64
maximum velocity [m/s] 7

viscosity [kg/m/s] 0.001
Kolmogorov scale 1 N.A
forcing wavenumber 4 N.A
linear coefficient -0.1 N.A

the initial velocity field, referred to as the burn-in time. Sub-
sequently, the velocity field results obtained at the simulation
resolution are downsampled to the save resolution, forming
the dataset. The same procedures are applied to generate the
decaying turbulence dataset by treating the external force term
as zero. The specific values assigned to these aforementioned
parameters for training and testing datasets are briefly sum-
marized in Tab. 1.

III. CONVOLUTION NEURAL NETWORK (CNN) WITH
MULTI-ORDER LOSS FUNCTIONS

The machine learning (ML) model employed in this work
is based on the fully convolutional architectures proposed by
[5]. The schematic representation of the network, as depicted
in Fig. 1, illustrates the integration of CNN with a numerical
solver to advance the state of the flow field. In [5], the mean
square error (M S E) between the predicted field, @t and ground
truth, u®’, is utilized as the loss function during training. In
this work, the loss function is tailored to encompass not only
the present time step but also to incorporate information from
preceding and/or subsequent time steps. This modification is
envisaged to enable the network to capture temporal varia-
tions in velocity and ultimately enhance the overall predictive
capacity.

ue’,

Gerar

L = MSE([ufT +uf™], [G; + 0.])

Fig. 1. The pipeline of a convolutional neural network controlling learned
approximations inside the convection calculation of a standard numerical
solver.

Filter constraints
Convective term
interpolation
Divergence

Numerical Solver

(1)

Considering M SE as the main measurement in the loss
function, £ as stated in (3), as such,

£ =MSE(ufT + a7, [i, + .]) , (&)

where u¢” and 1, are defined accordingly as follow,
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o Baseline Method [5], ‘baseline’:

GT _ g . §

u; ;o . =0

o Pure numerical solver, ‘coarse’ (Physics-driven loss func-

tion):

GT _ GT a, = us

u, t ;

e Zeroth order backward, ‘zeroOrder’:

ul? =ufh for t=0,ul’ = uOGT
ﬁ* = ﬁt,1 for t= 0, fl* = ﬁ()

o 1% order backward, ‘1stOrder’:

GT _ ..GT ar Gcr
OEwl + (wh - wl)

for ¢ =1[0,1],u¢” = [u§”, uf")
=041+ (ﬁt—l - ﬁt—2) )

t=0,1], i, = [ig, 1]

u

for

o 2" order backward, ‘2ndOrder’:

GT _  GT GT _  GT
w = w4 (a - wl)

1 ar GT |, GT
+ 5(“1—1 —2u" +uy)

for ¢=0,1,2,uf” = [uf” uf”, uf’”]
U, =01 + (41 — Qy—2)
1. . N
+ 5( to1 — 2049+ 0y_3)
for t= [O, 1,2},]?1* = [ﬁo,flh ﬁg]
o Central difference, ‘centerDiff’:
1
uST =+ LT - u).
for ¢=10,1],u¢” = [u§7, uf]

- - 1, .
Uy = U1 + E(ut —y_2),

for t= [07 1}, a, = [ﬁ07ﬁ1]

The supplementary terms (u.) introduced in (3) can be
acquired through various methodologies. Three primary ap-
proaches are considered: (i) ‘coarse’, which is derived from
the output of the pure numerical solver (u)*) at coarse grid
resolution (64 x 64), where u{v S is the 1-time step roll-out
from pure numerical solver that is fed with previous time step
U—1 as input; (ii) multi-order ‘backward’, which is obtained
by incorporating information from one or more preceding time
steps; and (iii) ‘centerDiff’, which is computed by employing
central differencing along the temporal dimension. Addition-
ally, the CNN is configured with hyperparameters specifying
11 hidden layers, 64 hidden channels, 2 output channels,
and 5 kernel sizes across all models. The optimization is
performed using the Adam optimizer with a learning rate of
1073, b1 = 0.9, and b2 = 0.98.
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Fig. 2. Forced turbulence: (a) Comparison of vorticity contours of all models. (b) Ensemble average of L2 norm of velocity error distribution over 32 initial
conditions against time steps for different models. (c) Ensemble average of L2 norm of velocity error relative to the baseline model. (d) Comparison of the
ensemble average of vorticity correlation over 32 different initial conditions for each model.

IV. RESULTS AND DISCUSSIONS

Vorticity is a fundamental concept in the field of fluid
dynamics, serving as a descriptor for the local rotation or
swirling motion exhibited by fluid particles within a given
flow field. As a vector quantity, it is defined as the curl of the
velocity vector field, mathematically represented as

w=VxU. “

The vorticity vector is orthogonal to the plane of rotation,
with its magnitude denoting the local rate of rotation, while its
sign indicates the direction of rotation. Regions characterized
by high vorticity signify pronounced rotational motion, often
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observed in vortex cores or regions exhibiting concentrated
turbulence. Conversely, regions of low vorticity correspond to
relatively smooth and non-rotating flow regions.

Fig. 2(a) presents a comparative analysis of vorticity field
evolution among five models, including the baseline model
proposed by Kochkov et al. [S] and ground truth at a specific
sample. Each successive column in the snapshot sequence
corresponds to a temporal separation of 250 time steps, while
each row represents the progress of the turbulent flow under
distinct models. The yellow boxes in the last column em-
phasize the differences in vortical structures between the five
models, the baseline, and the ground truth. Both ‘coarse’ and
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Fig. 3. Decaying turbulence: (a) Comparison of vorticity contour of all models. (b) Ensemble average of L2 norm of velocity error distribution over 32 initial
conditions against time steps for different models. (c) Ensemble average of L2 norm of velocity error relative to the baseline model. (d) Comparison of the
ensemble average of vorticity correlation over 32 different initial conditions for each different model.

‘centerDiff” models exhibit vortices similar to those observed
in the baseline and ground truth. This agreement is further
corroborated by the ensemble average of the L2 norm of
velocity error, presented in Fig. 2(b), defined as,

N
1 N
< €yv >:Nzl‘|ui7u?TH23 (5)
i=

where N is the total number of initial conditions, @ and u®”
are the predicted and ground truth velocity fields, respectively,
as a specific time instant. A series of subplots are presented

at three distinct time instants, indicating that both ‘zeroOrder’
and ‘centerDiftf” models outperform the baseline performance
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at all time points, achieving a maximum reduction in error of
48% compared to baseline as illustrated in Fig. 2(c).

In another perspective, the ensemble average vorticity corre-
lation with respect to the ground truth is plotted in Fig. 2(d),
indicating that all models perform better than the baseline,
especially the ‘centerDiff” model which has the best perfor-
mance over a longer period, approximately 80 time steps more
provided the threshold criterion is set at a correlation of 0.95.

Fig. 3(a) depicts the temporal evolution of the decaying
vorticity field originating from a specific initial condition, as
generated by the decaying turbulence dataset and processed
through various loss function models within the neural net-
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TABLE II
SUMMARY OF TRAINING TIME, GPU MEMORY, AND RAM USAGES OF ALL MODELS USED IN BOTH FORCED AND DECAYING TURBULENCE DATASETS.

) L . Peak GPU memory usage | Peak RAM usage

Models Tot. training time [hr] during training [GB] during training [GB]
baseline 3.81 6.66 10.5

B | coarse 3.62 11.67 15.8

2 | zeroOrder 3.30

£ [ TstOrder 329 6.66 10.5
2ndOrder 332 '
centerDiff 3.46 10.9

o baseline 3.78 6.66 10.5

£ | coarse 4.41 11.67 159

E‘ zeroOrder 334

2 1stOrder 3.32 10.5

S 2ndOrder 3.8 6-66
centerDiff 3.46 10.8

TABLE 1II V. CONCLUSION

COMPARISON OF INFERENCE AND SIMULATION TIMES OF ALL MODELS
FOR BOTH FORCED AND DECAYING TURBULENCE DATASETS.

Models Total inference time [s] Total simulation time [s]
baseline 30
] coarse 107
g zeroOrder 53 3654
52 1stOrder 24
2ndOrder 44
centerDiff 49
o baseline 24
S | coarse 77
? zeroOrder 20 2159
8 1stOrder 24
2ndOrder 29
centerDiff 39

work framework. The highlighted yellow boxes reveal both
the ‘coarse’ (third row), and ‘centerDiff’ (last row) models
demonstrate compatibility with the ground truth and even
outperform the baseline model.

This observation is further substantiated quantitatively by
the ensemble average of €,,,, which is computed for 32 initial
conditions based on (5) and shown in Fig. 3(b) for all mod-
els. As corroborated by Fig. 3(c), the ‘coarse’, ‘centerDiff’,
and ‘zeroOrder’ models yield better inference results relative
to the baseline. Similarly, the vorticity correlation plots in
Fig. 3(d) unambiguously demonstrate that all models, except
the *2ndOrder’ model, exhibit enhanced long-term predictabil-
ity compared to the baseline, particularly the ‘coarse’ and
‘centerDiff” models. Overall, the ‘centerDiff’ model offers
a stable and more reliable predictive capability across two
distinct turbulent flows.

Tab. II provides a concise summary of the total training time
required for 32 distinct initial conditions for each model, along
with the corresponding peak GPU memory and RAM utiliza-
tion during the training process. Tab. III offers a comparative
assessment of the time necessary for each model to generate
a total of 4848 time steps of flow fields for 32 diverse initial
conditions, in contrast to the time taken by the pure numerical
simulation and baseline model by [5]. Evidently, the network
has expedited the simulation of unsteady turbulent flows by a
minimum of two orders of magnitude.
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In this work, we propose incorporating preceding and future
time steps into the loss function to improve the performance of
turbulent flow prediction. The loss function employed by the
baseline only considers the current time step. During longer
roll-outs, the model only retains information from the most
recent time step, neglecting data from previous and future
time steps. By incorporating preceding and future time steps
into the loss function, the model is compelled to jointly
optimize for the current and earlier time steps. This approach
enables the model to remember the temporal evolution, thereby
learning better.

While this work highlights the potential and feasibility of
employing neural networks with higher-order loss functions
to advance the simulation of unsteady fluid flows at reduced
computational costs, while maintaining a reasonable degree
of accuracy, it is pertinent to acknowledge certain limitations.
Notably, the present approach is constrained to structured grids
due to the inherent nature of CNNs, which are designed for
uniform mesh processing. Additionally, errors are introduced
when utilizing coarse grids, with cumulative effects occurring
when employing neural networks for prediction tasks.

To address the limitations stemming from the use of
structured grids and the accumulation of errors when using
coarse grids, future works could explore several potential
approaches for improvement. First, assembling different loss
functions with trainable weights could refine the predictions.
Additionally, exploring alternative network architectures, such
as graph convolutional networks, which can better handle
non-uniform grids, could be beneficial. Finally, conducting
a comprehensive sensitivity analysis on grid resolution and
network architecture parameters may provide insights into
optimizing the model’s performance on non-uniform grids. By
addressing these aspects, future work can strive to enhance
the accuracy and applicability of neural network models in
simulating unsteady fluid flows across a broader range of grid
types and problems.
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