Topological Data Analysis

Naheed Anjum Arafat Phd Student (3rd Year) School of Computing

Supervisor: Stéphane Bressan

November 25, 2020

November 25, 2020

1 / 21

2 Topology in 21st Century

æ

Image: A matrix

Topology: Coffee Mug-Donut Story

The Game of Continuous Deformation:-

- Allowed: Stretch, Squeeze, Bend, Twist
- Not allowed: Tearing
- Goal: Try to transform one into another.

Image: Image:

3

- Objects:- Polyhedrons, Complexes, Manifolds etc.
- Invariants:- Euler Characteristics, Betti Numbers, Fundamental groups etc.

- Objects:- Polyhedrons, Complexes, Manifolds etc.
- Invariants:- Euler Characteristics, Betti Numbers, Fundamental groups etc.

How to study?

- The Objects as Groups (Algebra).
- The invariants as *Ranks*.

- Objects:- Polyhedrons, Complexes, Manifolds etc.
- Invariants:- Euler Characteristics, Betti Numbers, Fundamental groups etc.

How to study?

- The Objects as Groups (Algebra).
- The invariants as Ranks.

Why its important?

• To characterize, classify, compare and distinguish objects.

Topology before 20th century

Leonard Euler [1707-1783]

- Object: Polyhedrons
- Invariant: Euler Characteristics, $\chi = V E + F$

Figure 1: Eulers polyhedron formula: Euler characteristic of any convex polyhedron is 2

November 25, 2020 5 / 21

Topology in 20th century: Birth of Algebraic Topology

Henri Poincaré [1854 - 1912]

- Object: 3D Manifolds
- Invariant: Betti numbers, Fundamental groups

Topology in 20th century: Birth of Algebraic Topology

Henri Poincaré [1854 - 1912]

- Object: 3D Manifolds
- Invariant: Betti numbers, Fundamental groups

Application

in Dynamical systems: Poincaré-Hopf theorem For a vector field on a compact manifold with a finite number of fixed points, the sum of indices at the fixed points is equal to the Euler characteristic of the manifold. Special case: Hairy ball theorem- the sum of indices = 2

Hairy ball theorem: You can't comb a hairy ball flat without creating a cowlick

Hairy ball theorem: You can't comb a hairy ball flat without creating a cowlick

Simplicial Complex, Manifold Triangulation

Figure 3: Simplicial Complex

Simplicial Complex, Manifold Triangulation

Figure 3: Simplicial Complex

Homology group: Let, \mathcal{K} be the simplicial complex and $S_k(\mathcal{K})$ be the set of its k-simplices. The power set of S_k is an abelian group (termed as the k-th chain group C_k) under the operation of $+_2$ (symmetric set difference). The chain groups are connected by boundary map $\partial_k : C_k \to C_{k-1}$. k-th Homology group, $H_k \triangleq Ker(\partial_k)/Im(\partial_{k+1})$ k-th Betti Number, $\beta_k \triangleq rank(H_k)$ **Homology group:** Let, \mathcal{K} be the simplicial complex and $S_k(\mathcal{K})$ be the set of its k-simplices. The power set of S_k is an abelian group (termed as the k-th chain group C_k) under the operation of $+_2$ (symmetric set difference). The chain groups are connected by boundary map $\partial_k : C_k \to C_{k-1}$. *k*-th Homology group, $H_k \triangleq Ker(\partial_k)/Im(\partial_{k+1})$ *k*-th Betti Number, $\beta_k \triangleq rank(H_k)$

β _k	counts	the	number	of	K-	dime	ensional	holes
----------------	--------	-----	--------	----	----	------	----------	-------

	-			SOC
β_0 (Connected Components)	1	1	1	3
β_1 (Cycles/Loops)	2	0	1	1
β_2 (Voids)	1	1	0	0

Preamble:

- Scientific data is Noisy, high dimensional and often in the form of Point Cloud from a metric space, e.g. output of 3D scanners, structure of biomolecules, sensor readings etc.
- We may not know the intrinsic dimension of the data.
- We do not have a unique simplicial representation of the data.

Preamble:

- Scientific data is Noisy, high dimensional and often in the form of Point Cloud from a metric space, e.g. output of 3D scanners, structure of biomolecules, sensor readings etc.
- We may not know the intrinsic dimension of the data.
- We do not have a unique simplicial representation of the data.

What TDA does

- Detects and Visualizes Global features of the data.
 - Global features: Clusters/Connectivity, Cycles, Voids etc.

Preamble:

- Scientific data is Noisy, high dimensional and often in the form of Point Cloud from a metric space, e.g. output of 3D scanners, structure of biomolecules, sensor readings etc.
- We may not know the intrinsic dimension of the data.
- We do not have a unique simplicial representation of the data.

What TDA does

- Detects and Visualizes Global features of the data.
 - Global features: Clusters/Connectivity, Cycles, Voids etc.

How?

- **Detection:** TDA Looks into the simplicial representation at **all scale**, in all dimension.
- Visualization: Provides a topological summary of the data, in all dimensions.

Persistent Homology (PH): mathematical tool for TDA

TDA workflow: PH constructs a nested sequence of Simplicial complexes (**Filtration**). Then tracks the persistence (birth and death) of Homology groups across the filtration. Then computes Topological summaries (barcodes, persistent diagrams) from the birth, death pairs. Point cloud \implies Nested complexes (Filtration) \implies barcodes.

Persistent Homology (PH): mathematical tool for TDA

TDA workflow: PH constructs a nested sequence of Simplicial complexes (**Filtration**). Then tracks the persistence (birth and death) of Homology groups across the filtration. Then computes Topological summaries (barcodes, persistent diagrams) from the birth, death pairs. Point cloud \implies Nested complexes (Filtration) \implies barcodes.

Figure 5: b_0 represents persistence in dimension 0, b_1 represents persistence in dimension 1.

November 25, 2020

11 / 21

Interpretation: Long bars are significant features, short bars are noise.

Another example

Figure 6: Barcodes in dimension 0,1 and Persistent Diagram.

November 25, 2020

12 / 21

Applications: Natural image

 A natural image (e.g. digital photograph) can be viewed as a vector in a very high-dimensional space P. The dimension d_p of P is the number of pixels in the camera resolution. A collection of such image constructs thus lies in some unknown manifold M embedded in P.
Can we find a dense sub-manifold of M?

Applications: Natural image

- A natural image (e.g. digital photograph) can be viewed as a vector in a very high-dimensional space P. The dimension d_p of P is the number of pixels in the camera resolution. A collection of such image constructs thus lies in some unknown manifold M embedded in P.
 Can we find a dense sub-manifold of M?
- The space of 3x3 high-contrast patches from natural images has the topology of a Klein bottle [1], which is a 2-manifold.

Figure 7: Klein bottle can not be embedded in $\mathbb{R}^3,$ but can be embedded in \mathbb{R}^4 and higher.

• This implies, a natural image patch can be represented as a vector in a klein bottle embedded in dimension d_p . This can be exploited to design a compression algorithm.

Applications: Coverage in Sensor network

- Problem Statement: Consider a region D ⊂ R², a set of sensors X and a subset F ⊂ X of *fence* sensors on the boundary of D. Each sensor can identify any other sensor within radius r_b. Each sensor has a coverage of r_c. Fence nodes at all times know the identity of their neighbors.
 - Can we determine coverage of sensors only from local information? [2]

Applications: Coverage in Sensor network

Problem Statement: Consider a region D ⊂ R², a set of sensors X and a subset F ⊂ X of *fence* sensors on the boundary of D. Each sensor can identify any other sensor within radius r_b. Each sensor has a coverage of r_c. Fence nodes at all times know the identity of their neighbors.

Can we determine coverage of sensors only from local information? [2]

- The co-ordinates, orientations and distances of neighboring nodes
 all are unknown.
- Using relative homology of the simplicial complex built from the network of X, they gave a sufficient condition of when all the sensors covers the domain D.

Study of Protein structure and folding [4] — First application of TDA in molecular biology.

- They proposed **Molecular topological fingerprint** (barcode constructed from PH of protein configuration) for protein characterization, identification and classification.
- They Proposed **slicing method** to analyze the topological fingerprints of alpha helices and beta sheets.
- They proposed **accumulated bar length** measure to quantitatively model protein flexibility.

TDA of Brain functional network from fMRI [3]

- They studied 15 patients repeatedly under *Placebo* and *Psilocybin* drugs. They collected segmented fMRI images and computed the time series correlation from them. Finally, they constructed a weighted network from the regions (vertices) and computed correlation coefficient (edge weight) between regions.
- They proposed a new representations (**Homological scaffolds**) of the topological features of the brain functional network.
- Experiment shows clear difference between the effects of these drugs on the patients.

- **Complex Network:** We are trying to characterize different real world networks using persistent homology.
 - Challenges: Real world networks are large. Computing filtration and PH is memory inefficient. We are working on memory efficient solutions to the existing algorithms.
- **Climate Network:** We have analyzed historical sea surface temperature data of the eastern pacific peninsula with a goal to separate the spatial topology of el-nino years from normal years.
 - We built an interactive map visualization of homological cycles across different years.
 - We are trying to interpret the cycles (Climate scientists!)

Cycle viz

Figure 8: https://naheedcse.shinyapps.io/rips/

Image: A mathematical states of the state

- Topology studies objects (simplicial complexes, manifolds) under continuous deformation.
- Topology characterizes objects by computing invariants (betti numbers)
- Homology **detects** global features of the data in one scale.
- Persistent homology **detects** and **represents** global features of the data in all scale.
- TDA has applications in dynamical systems, complex networks, biology, image analysis, 3D shape analysis, signal analysis and many more.

Thank You!

2

 Carlsson, Gunnar et al. On the local behavior of spaces of natural images.
International journal of computer vision, 2008

- De Silva, Vin and Ghrist, Robert. Homological sensor networks Notices of the American mathematical society, 2007
- Petri et al. *Homological scaffolds of brain functional networks* Journal of The Royal Society Interface, 2014
- Xia, Kelin and Wei, Guo-Wei. Persistent homology analysis of protein structure, flexibility, and folding, International journal for numerical methods in biomedical engineering, 2014,