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Introduction

Uncertain Graph

An Uncertain Graph is a graph where every edge has an independent probability of
existence (encapsulating real-world uncertainty).
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Examples

Sensor networks: Edge probability encapsulates packet delivery probability via the
corresponding link.

Protein-protein interaction networks: Edge probability encapsulates the probability
of interaction between two proteins established through noisy and error-prone
experiments.

Social Networks: Edge probability encapsulates the probability that some action by
a node (u) will be adopted by another node (v) due to the corresponding link (u, v).

Traffic networks, Knowledge bases constructed from diverse sources, etc.
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Structural properties of Uncertain Graphs have uncertainty

Possible world semantics

An uncertain graph G with |E | = m edges leads to 2m possible worlds. Every possible
world G has the probability Pr(G) =

∏
e∈EG

p(e)
∏

e′∈E\EG
(1 − p(e′))
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An uncertain graph and its possible worlds. Pr(W2) = 0.5 * (1-0.2) = 0.4

Structural properties: Reachability, #Triangles, Length of a shortest path, Node label
Distribution induced by a structural property:

Prob(Reach(A,C) = 1) = Pr(W4), because C is reachable from A in only W4.

Prob(Reach(A,C) = 0) = Pr(W1) + Pr(W2) + Pr(W3) = 1 - Pr(W4), because C is not reachable
from A in W1, W2 and W3.

This distribution has uncertainty
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Problem Statement & Contributions

1 How to measure the uncertainty induced by structural properties of an
Uncertain graph?

We proposed to use entropy to measure uncertainty.
We proposed a Monte-Carlo algorithm with theoretical guarantee on the
estimate of entropy.

2 Given a limited budget of k , how to select at most k uncertain edges
updating whose probabilities maximally reduces uncertainty?

argmax
E1⊆E ,|E1|≤k

{
∆H(E1) = H(Ω)− H(Ω′)

}
(1)

where Ω is the random variable indicating property values, e.g. Ω ∈ {0, 1}
for reachability. E1 ⊆ E indicates the uncertain edges whose probabilities are
to be updated. H(Ω) and H(Ω′) indicates the entropy before and after edge
probability updates.

We proposed a greedy subgraph selection-based efficient algorithm.
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Challenges

Hardness Uncertainty estimation and reduction of network properties are hard
since, computing the underlying properties such as reliability,
shortest path, triangle count, etc. over uncertain graphs themselves
are #P-hard.
The objective function for uncertainty reduction is not monotonic,
neither submodular, nor supermodular. An exact approach for
selecting the k-best edges has exponential time complexity.

Generality and adaptability Existing methods for uncertainty reduction work in a limited
setting, e.g., for reliability query and crowdsourcing-based edge cleaning.
They ignore other graph properties, ML model outputs, and diverse kinds
of edge probability updates. We considered 2 types of updates:

1 U1
(
p(e)

)
: (0, 1)→ 1: The resulting edge probability is known apriori.

2 U2
(
p(e)

)
: (0, 1)→ {0, 1}: The resulting edge probability is revealed only after

the update (e.g., based on crowdsourcing results).
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Measuring Uncertainty

Estimating Pr(Ω = Ω). The true probability distribution Pr(Ω = Ω) is
approximated via MC-sampling using the sample distribution P̂r(Ω).

P̂r(Ω = Ω) =

∑T
i=1 I (P(Gi ) = Ω)

T
(2)

where {G1,G2, . . . ,GT} are T possible worlds sampled via independent sampling
of edges as per their probabilities. I () is indicator function. P(Gi ) is the value of
the graph structural property on possible world Gi .

Theorem: P̂r is unbiased
P̂r(.) is an unbiased estimator of Pr(.)

Estimating Entropy.

Ĥ = −
∑

Ω∈ ˆSup(P,G)

P̂r(Ω = Ω) log P̂r(Ω = Ω) (3)

Compute N independent entropy estimates Ĥ1, Ĥ2, . . . , ĤN , and return the
average of those N estimates.

Generality: The algorithm works for any real-valued function P
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Reducing Uncertainty

Naive algorithm Enumerate all subsets of E of size up to k , compute the updated
entropy and select the subset whose update reduces the initial
entropy maximally.

Exact algorithm.
Issues: Exponential (in |E |) time-complexity.

Greedy algorithm At every iteration, greedily select the edge that reduces the
entropy maximally.

Approximate entropy H(Ω)− H(Ω′) using MC sampling. Hence time-complexity
is linear (in |E |).
Cold-start problem: A locally-best solution at earlier rounds may lead to a
globally sub-optimal solution.

Greedy+subgraph algorithm Rank subgraphs of interest based on the network
function, update operation, and the entropy of subgraphs. Select
the best subgraph in terms of subgraph entropy.

Subgraphs of interest: Shortest path between the s-t pair (reachability and
Shortest Path query), the triangles in G (#Triangles query), the explanation
subgraphs in a node’s neighborhood (Node classification).
Entropy of a subgraph S,

H(S) = −Pr(S) log Pr(S)− (1− Pr(S)) log(1− Pr(S)) (4)

where Pr(S) = Πe∈Sp(e).
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Experiments: Datasets

Table 1: Statistics of datasets. Reach: reachability, SP: shortest path distance, #Tri: triangle counting,
NC: node classification

graph type queries
shown #nodes #edges edge prob.

ER synthetic reach,
SP, #Tri 15 22 0.27 ± 0.21

Biomine biological reach, SP 1 008 201 13 485 878 0.27 ± 0.21
Flickr social #Tri 78 322 10 171 509 0.09 ± 0.06
Products crowdsourced reach 2 173 37 641 0.17 ± 0.09
Papers crowdsourced #Tri 995 152 731 0.26 ± 0.23
DBLP collaboration Node Class. 632 870 3 301 970 0.46 ± 0.14
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Experiments: Uncertanty estimation

Comparison w.r.t. to an exact method:

Table 2: Entropy estimate: comparison with Exact method (ER)

algorithm avg.
running time (sec) avg. error

Reach SP #Tri Reach SP #Tri
Exact 177.4 190.9 815.8 0 0 0
MC 0.039 0.096 0.368 0.088 0.086 0.058

Variants of MC algorithm:

Table 3: Entropy estimate for reachability (Biomine)

algorithm avg.
running time (sec)

avg.
error

avg. peak
mem. (GB)

MC 32849.5 0 4.0
MC+BFS 2742.2 0.005 4.0

ProbTree-MC 18515.1 0.008 8.6
ProbTree-MC+BFS 2257.1 0.049 8.6

RSS 1672.1 0.100 4.0
ProbTree-RSS 1342.8 0.300 8.6
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Experiments: Uncertainty reduction
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(a-b): Comparison among Exact, Greedy, and Greedy+subgraph, ER dataset, update U1. Each s-t pair is
3-hops away when budget = 3, and 4-hops away when budget = 4. Greedy often does not reduce entropy
at all due to the cold-start problem. (c-d): Comparison between our Greedy+subgraph with baseline
PSTAR_G1, Products dataset, update U2. Our algorithm is more effective + 32-128X more efficient.

1
Lin et al. Human-powered data cleaning for probabilistic reachability queries on uncertain graphs. TKDE (2017).
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ML Application: Strategic Collaboration Problem

Find co-authors to collaborate often such that someone’s profile is more
prominently classified in a specific research domain.

Training We generate 100 possible worlds from the uncertain DBLP graph and train a 3-layer
vanilla GCN on the labeled nodes from these possible worlds in a supervised manner.

Testing For a test node (Pamela Zave), we obtain its predicted class labels across 10 possible
worlds. Based on this, we obtain the frequency distribution of the predicted classes.

Finding Subgraph of Interest (S) For a test node, we find its majority predicted class and apply
SubgraphX on each possible world to obtain an explanation subgraph that explains the
majority class prediction in that possible world.

Reducing Uncertainty We apply Greedy+subgraph on the explanation subgraphs and clean the edges to 1.
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Figure 2: (a) The distributions of predicted class for Pamela Zave (a senior researcher in software
requirement engineering) before and after cleaning top-16 uncertain edges. (b) The recommended future
collaborations (among her co-authors) such that she is more prominently classified into SW.
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Conclusion

We studied estimating and reducing uncertainty of computing network
functions over uncertain graphs.
For uncertainty estimation, we proposed an approximation algorithm with an
(ϵ, δ)-type guarantee.
For uncertainty reduction, we designed a practical greedy subgraphs selection
algorithm that reduces the cold start problem of greedy approaches.
Based on empirical results, our algorithms coupled with indexing and smart
sampling strategies achieve the best accuracy and efficiency.
Our case study depicted an application of uncertainty reduction for node
classification in the strategic collaboration problem.

Future work.

Extending our solution to network functions generating multiple outputs, e.g., all
subgraphs satisfying an input constraint, all nodes reachable within a limited number of
hops, all nodes classified in a specific label, etc.
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Q&A2

2I am on the job market. I would be happy to discuss collaborations and job
opportunities.



Supplementary Slides
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Algorithm

Estimate Entropy
Input: positive integers N, T , function P : G → R, uncertain graph G = (V , E , p)
1: for all i = 1, 2, . . . ,N do
2: Compute sample distribution:P̂r i , ˆSupi (P,G)← Estimate PrSupport(T ,P,G)
3: Compute sample distribution Entropy: Ĥi ← −

∑
Ω∈ ˆSupi (P,G) P̂r i (Ω) log P̂r i (Ω)

return 1
N

∑N
i=1 Ĥi

Estimate PrSupport
Input: positive integer T , function P : G → R, uncertain graph G = (V , E , p)

1: initialize P̂r(.)← 0, ˆSup(P,G)← ϕ
2: for all i = 1, 2, . . . ,T do
3: Sample a world Gi ⊑ G via independent sampling of edges based on their probabilities
4: Compute observed function value: Ω = P(Gi )

5: P̂r(Ω)← P̂r(Ω) + 1
T

6: ˆSup(P,G)← ˆSup(P,G) ∪ {Ω}
return P̂r , ˆSup(P,G)
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Sample complexity

Pr

(∑
Ĥi

N
− H(Ω) ≥ |Sup(P,G)| − 1

2T
+ ϵ

)
≤ 2e

−2Nϵ2
log2|Sup(P,G)| (5)

we refer to |Sup(P,G)|−1
2T + ϵ as the margin of error.

We observe that larger T decreases the margin of error.

In contrast, N has little impact on the margin of error; however, the probability that
our error estimate crosses that margin increases as we reduce N.

When the support size |Sup(P,G)| increases, both the margin of error and the
probability that our error estimate crosses that margin increase. Thus, a lower
support size |Sup(P,G)| is preferred.
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Cold-start problem
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The edges that should be chosen for cleaning as per U1 to reach global optima are
colored red ([sy ], [su]). The edges chosen by Greedy are colored blue. Greedy
selects the edge [sx ] at round 1 because it is locally best at round 1.
However, this leads to a globally sub-optimal selection ([sx ], [su]).
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