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What is this Talk About?

Can we construct an approximate representation which
is a good approximation of the underlying space,

can be constructed not only for point clouds but also non-euclidean datasets
such as graphs,
maintains a bounded approximation ratio for persistence homology
computation, and
helps compute persistent homology faster?

YES
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Background on Topological data analysis (TDA)
Computational Issues in TDA and approximate simplicial representations
ϵ-net: Old approach in new application.
Our proposal: ϵ-net induced lazy witness complex and approximation
guarantees.
Our algorithms.
Questions.
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Topological features

The underlying space: A Ring in R2



Topological features

The underlying space: A Ring in R2

Top. feat. at dim. 0: Connected components (1)
Top. feat. at dim. 1: cycles, Inner-cycle ∼ Outer-cycle (1)
Top. feat. at dim. 2: voids (0)
(Formal) Top. feat. at dim. k : Generators of the dim. k homology group.



Input Data: Point cloud, graph

Point cloud

Graph2

2simple, connected, unweighted, undirected graph throughout this talk.



Representation: Simplicial complex at an offset
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Representation: Simplicial complex at an offset

Simplicial representation at offset Fα ≜ {σ(∪x∈PBα/2(x))}



Aggregation of Representations: Filtration

A filtration is a sequence of simplicial representations F ≜ (Fα1 ,Fα2 , · · · , ) where
α1 ≤ α2 ≤ · · · .
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Topological Features and Persistence
As higher-order simplices appear (born) in the filtration,

new cycles may appear (new homology classes being born)
some cycles may vanish by becoming boundaries of higher-order simplices.
(existing homology classes being merged with others)

The birth and deaths of homology classes are represented in different ways:
barcode, persistence diagrams etc.

𝛼

𝛼



TDA pipeline: Summary
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Figure 1: TDA pipeline

Input Data: Point cloud, Graph.
Topological Representations:- Simplicial complex at offset. Mathematically:
A vector space
Filtration:- Sequence of offset simplicial complexes. Mathematically: A
sequence of vector spaces with canonical inclusion map defined by boundary
operator.
Persistent Homology Class:- Inclusion maps induces linear maps in the
homology vector spaces in the sequence. The image of these maps
charecterizes the persistence (birth,death) of the homology classes in the
sequence.
Topological descriptors: Multiset of points in R2 called persistence diagrams.
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Computational Issues with simplicial
Representations and approximate representations.
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Approximate Simplicial Representations

Čech complex captures the actual topology of the underlying space.
Issue: computionally challenging → at most O(nk) simplices of dim. up to k.

Vietoris-Rips Complex (Rα) for a given offset α considers a simplex σ to be
in Rα if the distance between every pair of points in σ is at most α

2 .
Good news: 2-approximation of the Čech complex in arbitrary metric space.
Bad news: at most O(nk) simplices of dimension up to k.

Computational bottleneck
Need to enumerate large number of simplices.

Research Question
Can we have approximate simplicial representations which are computable in
reasonable time, yet good approximations to Vietoris-Rips or Čech complex?
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A Computationally Faster Approximation: Lazy Witness
Complex and The Question to Solve

Lazy witness Complex LWα(P , L)

Lazy witness Complex LWα(P, L) of a point-cloud P is a simplicial complex over a
landmark set L containing simplices σ such that ∀vi , vj ∈ σ , ∃w ∈ P with the
following property:

max{d(w , vi ), d(w , vj)} ≤ α+ d(w , L)

here, d(w, L) is the distance from w to its closest point in L.

Good news: Vietoris-Rips complex on landmarks is Lazy witness complex. The
number of simplices in Lazy witness complex is O(|L|k) << O(|P|k) for |L| << |P|
Bad news: There is no approximation guarantee available for |L| ̸= |P|. There is
no algorithm that selects L with any approximation guarantee.

New Questions
How to select the landmarks?
How good are the landmarks selected by an algorithm?
Can we obtain any approximation guarantee for the lazy witness complex?
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Our Contributions

The Central Concept
We respond to all these questions by reincarnating the idea of ϵ-net in TDA.

Q. Can we obtain any approximation guarantee for the lazy witness complex?

-> Lazy witness complex induced by an ϵ-net is a 3-approximation to the
Vietoris-Rips complex (point cloud and connected unweighted graph).

Q. How good are the landmarks selected by an algorithm?

-> ϵ-net is an ϵ-approximation of the point cloud and graph vertices in Hausdorff
distance.

Q. How many landmarks are there in an ϵ-net?

-> For a connected unweighted graph of diameter ∆, there exists an ϵ-net of size at
most (∆

ϵ
)O(log

|V |
ϵ

). (For point cloud it is known3 to be (∆
ϵ
)Θ(D))

Q. How to select the landmarks?

-> polynomial-time algorithms to construct ϵ-net on point cloud and on graphs.
3Robert Krauthgamer and James R Lee. “Navigating nets: simple algorithms for

proximity search”. In: Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms. 2004.



ϵ-net: old approach in new application
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ϵ-net for point cloud

ϵ-sample (Each blue point is
within ϵ of some red point)

ϵ-sparse (Each pair of red points
are ϵ-far from each other

ϵ-net

Definition (ϵ-sample)
A set L ⊆ P is an ϵ-sample of P if the collection {Bϵ(x) : x ∈ L} of ϵ-balls of radius ϵ
covers P , i.e. P = ∪x∈LBϵ(x).

Definition (ϵ-sparse)
A set L ⊂ P is ϵ-sparse if for all x , y ∈ L, d(x , y) > ϵ.



ϵ-net for point cloud

ϵ-sample (Each blue point is
within ϵ of some red point)

ϵ-sparse (Each pair of red points
are ϵ-far from each other

ϵ-net

ϵ-net
A subset L of points which is ϵ-sparse and ϵ-sample of point cloud P.



ϵ-net for undirected graphs

ϵ-sample ϵ-sparse
ϵ-net

Definition (ϵ-sample)
A set L = {u1, u2, . . . , u|L|} ⊆ V is an ϵ-sample of graph G = (V , dG ) if the collection
{Nϵ(ui ) : ui ∈ L} of ϵ-neighbourhoods covers G i.e. ∪iNϵ(ui ) = V .

Definition (ϵ-sparse)
A set L = {u1, u2, . . . , u|L|} ⊂ V is ϵ-sparse if for any distinct ui , uj ∈ L, dG (ui , uj) > ϵ in
graph G .
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ϵ-net for undirected graphs

A graph G = (V ,E )

ϵ-sample ϵ-sparse
ϵ-net

Definition (ϵ-net)
A subset L ⊂ V of vertices which is ϵ-sparse and an ϵ-sample of graph
G = (V , dG ).
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ϵ-net induced Lazy witness complex: Theoretical
guarantees
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The meaning of approximation guarantee

Suppose F = (Fα)α>0 and G = (Gα)α>0 be two filtrations and their associated
persistence diagrams at dimension k be Dgm(F) and Dgm(G). Approximation is
defined in terms of distance between persistence diagrams.

Definition (Bottlneck distance between diagrams)

dB(Dgm(F),Dgm(G)) ≜ inf
ϕ:Dgm(F)→Dgm(G)

sup
x∈Dgm(F)

∥x − ϕ(x)∥∞

where ϕ is a bijection between points in the diagrams Dgm(F) and Dgm(G)

Definition (δ-approximation between diagrams)
Let (logF)A be the re-parameterisation of (F)A on the natural logarithm scale:

logFA ≜ {Feα}, for any α ∈ A

A persistence diagram Dgm(FA) is defined to be δ-approximation to diagram Dgm(GB)
if the following holds

dB(Dgm(logFA),Dgm(log GB)) ≤ log(δ)

.
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The meaning of approximation guarantee (contd.)

We will use the following lemma4 for our final result.

Lemma (Persistence Approximation Lemma)
If there exist δ > 0 such that the two filtrations (F)α≥0 and (G)α≥0 satisfy
Fα/δ ⊆ Gα ⊆ Fδα for all α ≥ 0, the persistence diagrams Dgm(Fα) and
Dgm(Gα) are δ-approximations of each other.

This lemma suggests that proving suitable interleaving between simplicial
representations is sufficient to show approximation guarantee between the
associated persistence diagrams.

4Donald R Sheehy. “Linear-size approximations to the Vietoris–Rips filtration”. In:
Discrete Computational Geometry 49.4 (2013), pp. 778–796.



Main results.

Lemma (Interleaving)
If the landmark set L is an ϵ-net of the point cloud P, the following interleaving of lazy
witness complex at α and Vietoris-Rips complex of L holds, for any ϵ ∈ R+ and α ≥ 2ϵ.

Rα/3(L) ⊆ LWα(P, L) ⊆ R3α(L)

Theorem (Persistent diagram approximation)
If L is an ϵ-net of the point cloud P the persistence diagram Dgm(LWc+2ϵ(L)) of the
filtration (LW(L))c+2ϵ induced by L is a 3-approximation to the diagram Dgm(Rc+2ϵ(L))
of the Vietoris-Rips filtration (R(L))c+2ϵ induced by L, for ϵ ∈ R+ and c ≥ 0.

Corollary
If L is an ϵ-net of the point cloud P, the bottleneck distance between the logarithm-scale
persistence diagrams Dgm(logLWc+2ϵ(L)) and Dgm(logRc+2ϵ(L)) is at most log(3), for
ϵ ∈ R+ and c > 0.
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Main results. (Graph)

Lemma (Interleaving)
If L is an ϵ-net of the vertex set V , the following interleaving of lazy witness
complex at α and Vietoris-Rips complex of L holds, for any ϵ ∈ R+ and α ≥ 2ϵ

Rα/3(L) ⊆ LWα(V , L) ⊆ R3α(L)

The main theorem and its corollary follows.
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Secondary results: Properties of ϵ-Net

How good are the landmarks? Does the subspace (point cloud sample,subgraph)
induced by ϵ-net representative of the actual point cloud or graph data?

Point cloud
The Hausdorff distance between the point cloud P and its ϵ-net L ⊆ P is at most ϵ.

Graph
The Hausdorff distance between (V , dG ) and its ϵ-net induced subspace (L, dL) is at
most ϵ.

Number of landmarks: For a given ϵ, how many points (vertex) are there in the ϵ-net?

Graph
For a connected unweighted graph of diameter ∆, there exists an ϵ-net of size at most
(∆
ϵ
)O(log

|V |
ϵ

)



Algorithms
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Algorithm for point cloud: ϵ-net-rand

ϵ

First landmark: Select uniformly at random from the point-cloud. Mark points in its ϵ-ball.



Algorithm for point cloud: ϵ-net-rand

ϵ
ϵ

Next landmark: Select u.a.r from the set of unmarked points. Mark points in its ϵ-ball. And so on.



Algorithm for point cloud:: ϵ-net-maxmin

ϵ

First landmark: Select u.a.r. from the point-cloud. Mark points in its ϵ-ball.



Algorithm for point cloud:: ϵ-net-maxmin

ϵ

ϵ

Next landmark: Select the point that is farthest from the current set of landmarks. And so on.



Algorithm for point cloud:: (ϵ, 2ϵ)-net

ϵ

2ϵ

First landmark: Select u.a.r from the point-cloud. Mark points in its ϵ-ball.



Algorithm for point cloud:: (ϵ, 2ϵ)-net

ϵ

ϵ

2ϵ

2ϵ

Second landmark: Select u.a.r from the unmarked points in the (ϵ, 2ϵ) envelope of the current set of
landmarks. And so on.



Practicality of the algorithms
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The size of ϵ-net generated by our algorithms are consistent with Krauthgamer’s theoretical upper-bound
(dataset: A sample from Torus surface).

Computational Complexity: For n points in RD

ϵ-net-rand: O( n
ϵD

)

ϵ-net-maxmin: O( n2

ϵD
)

(ϵ, 2ϵ)-net: O( n2

ϵD
)
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Algorithm for Graph: Greedy ϵ-net
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Figure 2: Greedy-ϵ-Net

Compute the ϵ-cover sizes for each vertex.
At each step, select the vertex with the largest ϵ-cover and mark the vertices
covered by it, finally, update the ϵ-cover sizes of non-marked vertices. Continue
until all vertices are marked as covered.
Time-Complexity: O(nûϵ + (∆ϵ )

log n
ϵ ) where ûϵ is the cover-size of the vertex with

the largest ϵ-cover.
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Algorithm for Graph: Iterative ϵ-net

Ring

Envelope

1-neighborhood

Figure 3: Iterative-ϵ-Net

Remarks: For a given ϵ, we empirically found Greedy ϵ-net to produce the least number
of landmarks in general. However Greedy ϵ-net is significantly inefficient compared to
Iterative ϵ-net.
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Comparison with Other approximate representations.

There are simplicial representations with better approximation guarantee than
ours, but

some of them are limited to point clouds.
some uses simplicial maps which may not induce a filtration with canonical
inclusion maps. As a result, one can not use well-studied matrix reduction
algorithm to compute persistence any more.



Comparison with Other approximate representations.

Existing approximations.
Sparse-Čech filtration5: (1 + ϵ) ϵ > 0 w.r.t to Čech. (Does not induce a filtration)

Sparse-Rips filtration6: (1 + 2ϵ) ϵ < 1
3 w.r.t Vietoris-Rips.

Simplicial Batch-collapse (Simba)7: (3 + 2
ϵ−1 ) ϵ > 1 w.r.t Vietoris-Rips (for point

cloud only).

ϵ-net induced lazy witness: 3 + 2ϵ ϵ > 0 w.r.t Vietoris-Rips on the whole dataset.
Works for point cloud and graphs.

5M. Kerber and R. Sharathkumar. “Approximate Čech complex in low and high
dimensions”. In: International Symposium on Algorithms and Computation. 2013.

6Sheehy, “Linear-size approximations to the Vietoris–Rips filtration”.
7Tamal K Dey, D. Shi, and Y. Wang. “Simba: An efficient tool for approximating

rips-filtration persistence via simplicial batch collapse”. In: Journal of Experimental
Algorithmics (JEA) (2019).



Future works:

We want to use ϵ-net
to obtain better approximate guarantees.
to investigate, compare and unify approximation schemes for Vietoris-Rips
representations such as Sparse-Rips and Simba.
to design scalable, fast algorithms for any metric space.
to efficiently apply persistent homology to machine learning problems.
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Thank You!
This is a joint work 8 with Debabrota Basu (INRIA) and Stëphane Bressan (NUS)

8The work on point cloud was published in Database and Expert systems proceedings
(DEXA) 2019.
The extension for graphs was presented in Applied Topological Data Analysis workshop
(ATDA), ECML-PKDD 2019.
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Supplementary Slides



Proof of Interleaving lemma:

To prove the first inclusion Rα/3(L) ⊆ LWα(P, L),
1 consider a k-simplex σk = [x0x1 · · · xk ] ∈ Rα/3(L).
2 For any edge [xixj ] ∈ σk , let w ′ be the point in P that is nearest to the

vertices of [xixj ] and wlog, let that vertex be xj .
3 Since w ′ is the nearest neighbour of xj , d(w ′, xj) ≤ ϵ ≤ α

2 (as d(L,P) ≤ ϵ).
4 Since [xixj ] ∈ Rα/3, d(xi , xj) ≤ α

3 < α
2 . By triangle inequality,

d(w ′, xi ) ≤ α
2 + α

2 ≤ α.
5 Therefore xi is within distance α from w ′. The α-neighbourhood of point w ′

contains both xi and xj . Since d(w ′, L) ≥ 0, the
(d(w ′, L) + α)-neighbourhood of w ′ also contains xi , xj . Therefore, [xixj ] is
an edge in LWα(P, L).

6 Since the argument is true for any xi , xj ∈ σk , the k-simplex σk ∈ LWα(P, L).
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Proof of Interleaving lemma(contd.):

To prove the second inclusion LWα(P, L, 1) ⊆ R3α(L)

1 consider a k-simplex σk = [x0x1 · · · xk ] ∈ LWα(P, L).
2 By definition of lazy witness complex, ∀[xixj ] ∈ σk there is a witness w ∈ P

such that, the (d(w , L) + α)-neighbourhood of w contains both xi and xj .
3 Hence, d(w , xi ) ≤ d(w , L) + α ≤ ϵ+ α ≤ 3α/2. By the same argument,

d(w , xj) ≤ 3α/2.
4 By triangle inequality, d(xi , xj) ≤ 3α. Therefore, [xixj ] is an edge in R3α(L).
5 Since the argument is true for any xi , xj ∈ σk , the k-simplex σk ∈ R3α(L).
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On computational infeasiblity of Čech complex: miniball
algorithm

One can run minimal algorithm to find the minimum enclosing radius of a
simplex σ. For a given σ, that radius will give the offset α where σ appears
first.
Fastest miniball algorithm runs in O(|σ|) time. (note that, the offset for σ
can be found in constant time for Vietoris-rips complex if the complex is
constructed dimension by dimension)
However to run miniball algorithm one still needs to enumerate σ first,
rendering the Čech filtration computation to be at least twice as slow as
corresponding Vietoris-Rips filtration.
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Experimental Validation of Approximation Guarantee
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Validation of the bound on Point-cloud sampled from Torus (red-line = log(3) upper bound).



Comparing our algorithm-output ϵ-net with Krauthgamer’s
guarantee
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Experimental Evaluation: Effectiveness-Efficiency
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Effectiveness and Efficiency of the algorithms on Torus dataset.



Experiments: Datasets

Figure 4: (left) Torus, (middle) Tangled-torus, and (right) 1grm Dataset



Relation to Maxmin and Random Landmark Selection
Algorithms

Given the number of landmarks K > 1, the set of landmarks selected by the
algorithm random/maxmin is δ-sparse where δ is the minimum of the
pairwise distances among the landmarks.
The choice of K may not necessarily make the landmarks a δ-sample of the
point cloud.



Algorithm complexity

ϵ-net-rand: O( n
ϵD
)

ϵ-net-maxmin: O( n
2

ϵD
)

(ϵ, 2ϵ)-net: O( n
2

ϵD
)



Experimental Evaluation: Stability
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Figure 5: 95% confidence band of the rank one persistence landscape at dimension 1 of the lazy witness
filtration induced by the landmark selection algorithms on Tangled-torus dataset.



Whats Next?

The topological approximation guarantee is
with respect to the Vietoris-Rips complex on ϵ-net landmarks chosen from a
point-cloud input.

Next up -
Better guarantee w.r.t Vietoris-Rips complex on point-cloud:-

Improved the approximation guarantee from 3-approximation of Rα(L) to
3log(c)

2 -approximation of Rα(P) for c ≥ 2.

Graph data 9:-
Defined ϵ-net for graphs.
Devised algorithms for computing ϵ-net of graphs.
Potential applications: Graph clustering, Graph visualization, Graph
classification.

Comparison with Sparse-Rips and Graph Induced filtration (A weakness!).

1To appear at ECML-PKDD’19 workshop on Applied Topological Data Analysis


