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Abstract

Capitalizing on the intuitive premise that shape characteristics
are more robust to perturbations, we bridge adversarial graph
learning with the emerging tools from computational topology,
namely, persistent homology representations of graphs. We
introduce the concept of witness complex to adversarial anal-
ysis on graphs, which allows us to focus only on the salient
shape characteristics of graphs, yielded by the subset of the
most essential nodes (i.e., landmarks), with minimal loss of
topological information on the whole graph. The remaining
nodes are then used as witnesses, governing which higher-
order graph substructures are incorporated into the learning
process. Armed with the witness mechanism, we design Wit-
ness Graph Topological Layer (WGTL), which systematically
integrates both local and global topological graph feature rep-
resentations, the impact of which is, in turn, automatically
controlled by the robust regularized topological loss. Given
the attacker’s budget, we derive the important stability guar-
antees of both local and global topology encodings and the
associated robust topological loss. We illustrate the versatility
and efficiency of WGTL by its integration with five GNNs and
three existing non-topological defense mechanisms. Our exten-
sive experiments across six datasets demonstrate that WGTL
boosts the robustness of GNNs across a range of perturbations
and against a range of adversarial attacks.

1 Introduction

Recent studies have shown that Graph neural networks
(GNN5s) are vulnerable to adversarial attacks. Small, often
unnoticeable perturbations to the input graph might result
in substantial degradation of GNN’s performance in down-
stream tasks (Jin et al. 2021b). In turn, compared to non-graph
data, adversarial analysis of graphs still remains largely un-
derexplored (Sun et al. 2022). Hence, systematic assessment
of adversarial contagions and consequently the development
of robust GNN models able to withstand a wide spectrum of
malicious attacks are of significant practical importance.
Presently, the three main strategies to defend GNNs against
adversarial attacks are graph purification, adversarial training,
and adversarial defense-based neural architectures (Feng et al.
2019; Giinnemann 2022; Mujkanovic et al. 2022). These
existing methods largely rely on pairwise relationships in
the graph at a node level while ignoring higher-order graph
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(sub)structures, their multi-scale properties, and interrelation-
ships, which are instrumental for the downstream learning
task (Benson et al. 2018; Torres et al. 2021). Relying on
pairwise relationships also results in the removal of a con-
siderable amount of the edges that are actually clean edges,
which decreases the gain in robustness (In et al. 2024).

In turn, in the last few years, we have observed a spike
of interest in the synergy of graph learning and Persistent
Homology (PH) representations of graphs (Zhao and Wang
2019; Carriere et al. 2020; Horn et al. 2022; Yan et al. 2022;
Chen, O’Bray, and Borgwardt 2022; Chen and Gel 2023).
PH representations enable us to glean intrinsic information
about the inherent object shape. By shape here, we broadly
understand properties that are invariant under continuous
transformations such as twisting, bending, and stretching.
This phenomenon can be explained by the important higher-
order information, which PH-based shape descriptors deliver
about the underlying graph-structured data. This leads to
an enhanced GNN performance in a variety of downstream
tasks, such as link prediction, and node and graph classifica-
tion (Hofer et al. 2020; Carriere et al. 2020; Yan et al. 2021;
Horn et al. 2022; Chen, Sizikova, and Gel 2022). Furthermore,
in view of the invariance with respect to continuous transfor-
mations, intuitively we can expect that shape characteristics
are to yield higher robustness to random perturbations and
adversarial attacks. While this intuitive premise of robustness
and its relationship with DNN architectures has been con-
firmed by some recent studies (Chen, Coskunuzer, and Gel
2021; Gebhart, Schrater, and Hylton 2019; Goibert, Ricatte,
and Dohmatob 2022), to the best of our knowledge, there are
no attempts to incorporate PH-based graph representations
for adversarial defense.

In this paper, we bridge this gap by merging adversarial
graph learning with PH representations of graph-structured
data. Our key idea is to leverage the concept of witness com-
plex for graph learning. This allows us firstly, to enhance the
computational efficiency of the proposed topological defense,
which is one of the primary bottlenecks for the wider adop-
tion of topological methods, and lastly, to reduce the impact
of less important or noisy graph information. In particular,
the goal of the witness complex is to accurately estimate the
intrinsic shape properties of the graph using not all available
graph information, but only a subset of the most represen-
tative nodes, called landmarks. The remaining nodes are



then used as witnesses, governing which higher-order graph
substructures shall be incorporated into the process of extract-
ing shape characteristics and the associated graph learning
task. This mechanism naturally results in two main benefits.
First, it allows us to drastically reduce the computational
costs. Second, it allows us to extract salient shape character-
istics (i.e., skeleton shape). Our topological defense takes the
form of the Witness Graph Topological Layer (WGTL) with
three novel components: local and global witness complex-
based topological encoding, topology prior aggregation, and
robustness-inducing topological loss.

The local witness complex-based features encapsulate
graph topology within the local node neighborhoods, while
the global witness complex-based features describe global
graph topology. Using only local topology prior to the loss
function might be vulnerable to local attacks, while only
global topology prior might be more susceptible to global
attacks. To defend against both types of attacks, both local
and global topology prior needs to be combined, thus motivat-
ing the design of the topology prior aggregator. Inspired by
studies such as Hu et al. (2019); Carriere et al. (2021), we use
the robust topological loss as a regularizer to a supervised
loss for adversarially robust node representation learning.
This allows for control over which shape features are to be
included in the defense mechanism.

Our Contributions:

* We propose the first approach which systematically
bridges adversarial graph learning with persistent homol-
ogy representations of graphs.

We introduce a novel topological adversarial defense for
graph learning, i.e. the Witness Graph Topological Layer
(WGTL), based on the notion of the witness complex.
WGTL systematically integrates both local and global
higher-order graph characteristics. Witness complex en-
ables us to focus only on the salient shape characteristics
delivered by the landmark nodes, thereby reducing the
computational costs and minimizing the impact of noisy
graph information.

We derive the stability guarantees of both local and global
topology encodings and the robust topological loss, given
an attacker’s budget. These guarantees show that local
and global encodings are stable to external perturbations,
while the stability depends on the goodness of the witness
complex construction.

Our extensive experiments spanning six datasets and eight
GNN s indicate that WGTL boosts the robustness capa-
bilities of GNNs across a wide range of local and global
adversarial attacks, resulting in relative gains of up to
18%. WGTL also smoothly integrates with other existing
defenses, such as Pro-GNN, GNNGuard, and SimP-GCN
improving the relative performance up to 4.95%, 15.67%,
and 5.7% respectively.

Existing Defenses for GNNs. There are broadly three types
of defenses: graph purification-based, adversarially robust
training, and adversarially robust architecture (Glinnemann
2022). Notable defenses that purify the input graph include
SG-GSR (In et al. 2024), Pro-GNN (Jin et al. 2020) and SVD-
GCN (Entezari et al. 2020). These methods learn to remove
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adversarial edges from the poisoned graph without consider-
ing higher-order interactions. In contrast, WGTL primarily
focuses on learning the key higher-order graph interactions
at both local and global levels and then adaptively assessing
their potential defense role via topological regularizer. The
local and global topological encodings remain robust despite
the false positive edges; as a result, WGTL alleviates the
problems associated with false positive edges (In et al. 2024),
enhancing the overall resilience against attacks. The adver-
sarial training-based defense methods augment node features
with gradients (Kong et al. 2022), or datasets by generating
worst-case perturbations (Xu et al. 2019). The goal is to train
with the worst-case adversarial perturbations such that the
learned model weights become more robust against worst-
case perturbation (Glinnemann 2022). However, adversarial
training can not defend against more severe perturbation than
the ones they were trained with. Better architectures such as
VAE (Zhang and Ma 2020), Bayesian uncertainty quantifica-
tion (Feng, Wang, and Ding 2021), and Attention (Zhu et al.
2019; Tang et al. 2020) have also been proposed for adver-
sarial defense. However, none of these tools have explored
the use of robust, higher-order graph topological features as
prior knowledge for improved defense. Recently, Gabrielsson
et al. (2020) designed a topology-driven attack on images and
topological loss, but this approach neither considers graph
data nor adversarial defense. Among the topology-driven
defenses, GNNGuard (Zhang and Zitnik 2020) discusses
graphlet degree vectors to encode node structural properties
such as triangles and betweenness centrality. However, un-
like the PH features used in WGTL, the graphlet approach is
empirical, without theoretical robustness guarantees. In turn,
while the robust loss function has been used before Ziigner
and Giinnemann (2019b), topological losses have never been
used in conjunction with adversarial defenses.

2 Background: Graphs, Persistent Homology,
Complexes, Adversarial ML

Topology of Graphs. G = (V, £, X) denotes an attributed
graph. Vis a set of IV nodes. £ is a set of edges. X € RV*F
is a node feature matrix, where each node corresponds to
an F' dimensional feature. The adjacency matrix of G is a
symmetric matrix A € RV*Y such that A, £ wy,, ie.,
edge weight, if nodes v and v are connected and 0, other-
wise. For unweighted graphs, we observe w,, = 1. Fur-
thermore, D represents the degree matrix of G, such that
D, 2 > vey Aup and 0, otherwise.

The central ideas leveraged in this paper are the local
and global topology of a graph. The topology of a graph is
defined by corresponding geodesic distance. The geodesic
distance dg(u,v) between a pair of vertices v and v € V is
defined as the length of the shortest path between v and v.
The path length is defined as the sum of weights of the edges
connecting the vertices v and v. Endowed with the canonical
metric induced by the geodesic distance dg : V x V —
R=9, a weighted simple graph G transforms into a metric
space (V, dg). For a given positive real number ¢ > 0, the
set of nodes that are no more than geodesic € away from a
given node determines the local topology of that node. When



e = Diam(G), i.e. the diameter of G, we retrieve the global
topology of the graph. Increasing ¢ from 1 to Diam(G) allows
us to retrieve the evolution of the inherent graph features,
like connected components, cycles, voids, etc. (Edelsbrunner,
Letscher, and Zomorodian 2002; Zomorodian 2005).
Persistent Homology. To retrieve the evolution of graph fea-
tures, we employ a Persistent Homology-based approach,
a machinery rooted in computational topology. Our topo-
logical space originates from subgraphs {G, : V(u,v) €
Gay dg(u,v) < ab1<a<pDiam(g), Where every subgraph G,
contains all edges of length less than «. To incorporate higher-
order information, simplicial complexes {# (Gn ) }o are con-
structed, where a higher-order simplex o € J¢ (G, ) if for
every node pair (u,v) € o, the simplex [uv] € £ (G, ), in
other words dg(u,v) < «. This nested sequence of simpli-
cial complexes is called a filtration, with o representing the
filtration value.

The key idea of PH is to choose a monotonic sequence of

scale parameters « and study changes in topological features
that occur to G, which evolves with respect to this monotonic
sequence of scales. Equipped with the filtration of complexes,
we can trace shape patterns such as independent compo-
nents, holes, and cavities which appear and merge as scale o
changes. For each topological feature p, we record the indices
b, and d, of #'(Gy,) and # (Gg,), where p is first and last
observed, respectively. We say that a pair (b,, d,) represents
the birth and death times of p, and (d, — b,,) is its correspond-
ing lifespan (or persistence). In general, topological features
with longer persistence are likely to contain some essential
information about the underlying object structure, while fea-
tures with shorter persistence are often associated with topo-
logical noise. The extracted topological information over the
filtration {7, , } is then represented in R? as a Persistence Di-
agram (PD), such that PD = {(b,,d,) € R? : d, > b,} UA.
A = {(t,t)|t € R} is the diagonal set containing points
counted with infinite multiplicity. Another useful represen-
tation is the Persistence Image (PI) which vectorizes the
persistence diagram with a Gaussian kernel and a piece-wise
linear weighting function (Adams et al. 2017). Persistence
images are sufficiently smooth and, as such, can serve as an
input to a fully trainable topological layer in deep learning.
(Zhao and Wang 2019; Rieck et al. 2020).
Witness Complexes. There are multiple ways to construct
an abstract simplicial complex #~ (Zomorodian 2005). Due
to its computational benefits, one of the widely adopted ap-
proaches is a Vietoris-Rips complex (VR). However, the VR
complex uses the entire observed data to describe the under-
lying topological space, and thus, does not efficiently scale
to large datasets (Zomorodian 2010). In contrast, a witness
complex captures the data shapes using only on a significantly
smaller subset £ C V, called a set of landmarks (De Silva and
Carlsson 2004). In turn, all other points in V are used as “wit-
nesses’” that govern the appearances of simplices in the wit-
ness complex. Arafat, Basu, and Bressan (2020) demonstrate
algorithms to construct landmark sets, their computational
efficiencies, and stability of the induced witness complex. We
leverage witness complex to scale to large graph datasets.

Definition 2.1 (Weak Witness Complex (De Silva and Carls-
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son 2004)). We call w € V to be a weak witness for a simplex
o = [vgvy ... v;], wherewv; € Vfori=0,1,...,land! € N,
with respect to £ if and only if dg (w, v) < dg(w, u) for all
v € oandu € £\ 0. The weak witness complex Wit(£, G)
of the graph G with respect to the landmark set £ has a node
set formed by the landmark points in £, and a subset o of
£ is in Wit(£, G) if and only if there exists a corresponding
weak witness in the graph G.

Adversarial ML and Robust Representations. GNNs aim
to learn a labelling function that looks into the features
the nodes in the graph G and assign one of the C la-
bels y, € {1,...,C} to each node v € V (Kipf and
Welling 2016). To learn to labelling, GNNs often employ
compact, low-dimensional representations, aka embeddings
R:G xV — R", for nodes that capture the structure of the
nodes’ neighbourhoods and their features, and then apply a
classification rule f : R™ — {1,...,C} (Kipf and Welling
2016; Hamilton, Ying, and Leskovec 2017; Zhang and Zitnik
2020).

The goal of a robust GNN training mechanism is to learn a
labelling function f o R such that the change in the predicted
labels, i.e. |(f o R)(G') — (f o R)(G)|, is the minimum, when
a graph G is adversarially perturbed to become G’ (Zhang
and Zitnik 2020). The budget of perturbation is defined by
d = [|G — G|l p is often fixed to 0 or 1 (Xu et al. 2019;
Wu et al. 2019b; Ziigner and Gilinnemann 2019b). There are
different ways to design a robust training mechanism, such
as training with an adversarially robust loss function (Xu
et al. 2019), using a stabilizing regularizer to the classifica-
tion loss (Ziigner and Giinnemann 2019b), learning a robust
representation of the graph (Engstrom et al. 2019; Liu et al.
2023), etc.

In this paper, we aim to design a robust representation R
of the graph G using its persistent homologies. Specifically,
we call a graph representation R robust, if for p,q > 0,

I1R(G) = R(G)llp = O(9), when [|G —G'llg =6

In the following section, we propose WGTL, and show that
WGTL achieves this robust representation property.

3 Learning a Robust Topology-aware Graph
Representation

The general idea is that encoding robust graph structural
features as prior knowledge to a graph representation learn-
ing framework should induce a degree of robustness against
adversarial attacks. Graph measures that capture global prop-
erties of the graph and measures that rely on aggregated statis-
tics are known to be robust against small perturbations (Bor-
gatti, Carley, and Krackhardt 2006). Examples include degree
distribution, clustering coefficients, average path length, di-
ameter, largest eigenvalue, and the corresponding eigenvector,
and certain centrality measures, e.g., betweenness and close-
ness centralities. However, these measures are not multiscale
in nature. Therefore, they fail to encapsulate global graph
structure at multiple levels of granularity. Many of them, e.g.,
degree distribution, and clustering coefficients, only encode
1-hop or 2-hop information. Such information can be learned
by a shallow GNN through message passing, rendering such
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Figure 1: Architecture of Witness Graph Topological Layer.
Landmark nodes are denoted as ).

features less useful as a prior. Features such as average path
length and diameter are too coarse-scale (scalar-valued) and
do not help a GNN to discern the nodes. Since existing robust
graph features can not encode both local and global topolog-
ical information at multiple scales, we introduce local and
global topology encodings based on persistent homology as
representations to the GNNs (Section 3.1). We also propose
to use a topological loss as a regularizer to learn topological
features better (Section 3.2).

3.1 Witness Graph Topological Layer (WGTL)

Component I: Local Topology Encoding. The Local topol-
ogy encoding component of WGTL (Figure 1) computes the
local topological features of every node in three steps. First,
we choose a landmark set £ from the input graph G. An
important hyperparameter of the local topology encoding is
the choice of the number of landmarks. Choosing too few
landmarks would reduce the informativeness of the latent
embedding. Choosing too many landmarks (i.e., |V|), on top
of being computationally expensive, might be redundant be-
cause the topological features of a neighboring node are likely
to be the same. Secondly, we use the landmarks to construct
an e-net of G (Arafat, Basu, and Bressan 2020), i.e. a set
of subgraphs {Gf},ce. Here, € £ max;, j,ee 0.5dg(I1,l2).
We compute witness complex for each of these G;’s, and
the corresponding persistence images PI(Wit(Gy)). Finally,
we attribute the PIs of the landmarks to each node in
its e-cover and pass them through a vision transformer
model to compute the local topology encoding, i.e. Zy, =
Transformer(PI(Wit(G€))1, ..., PI(Wit(G¢))n). The lo-
cal topology encoding Z, is a latent embedding of local
topological features of each node in G.

When the attack model poisons the adjacency matrix, es-
pecially in the cases of global attacks, the local topological
encodings are also implicitly perturbed. In Theorem 3.1, we
show that local topological encodings are stable w.r.t. per-
turbations in the input graph. Specifically, if an attacker’s
budget is O(9), the encoded local topology is perturbed by
O(C.(6 + €)). The bound indicates the trade-off due to land-
mark selection. If we select fewer landmarks, computation
becomes faster and we encode topological features of a larger
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Figure 2: [llustration of Witness Complex-based topological
regularizer Ly,,,. Landmark nodes are denoted as (X).

neighborhood. However, an increase in C. yields less sta-
ble encoding. Whereas if we select more landmarks, we get
more stable encoding but we lose informativeness of the local
region and computational efficiency.

Theorem 3.1 (Stability of the encoded local topology). Let us
denote the persistence diagram obtained from local topology
encoding of G as T(G) (Figure 2). For any p < oo and C, be-
ing the maximum cardinality of the e-neighborhood created
by the landmarks, we obtain that for any graph perturbation
G — G'||l1 = O(9) the final persistence diagram representa-
tion changes by W,,(T(G), T(G")) = O(C¢9), if we have ac-
cess to Céch simplicial complexes, and W,(T(G), T(G")) =
O(Cc (6 + ¢€)), if Witness complex is used for the Local Per-
sistence Images.

Component I1: Graph Representation Learning. The
component IT of WGTL deploys in cascade M GNN lay-
ers with ReLU activation function and weights {@("™)1M__
The representation learned at the m-th layer is given by

1 1
g:

Zi) — ReLU(D * AD* 2 ©™). Here, 2
A = A+ 1, and D is the corresponding degree matrix.
Component ITI: Global Topology Encoding. The global
topological encoding represents the global witness complex-
based topological features of a graph (Component III in Fig-
ure 1). First, we use the input adjacency matrix to compute
the lengths of all-pair shortest paths (geodesics) among the
nodes. The topological space represented by the geodesic dis-
tance matrix is used to compute the global witness complex-
based persistence image PI(Wit(G)) of the graph (Arafat,
Basu, and Bressan 2020). Finally, the persistence image rep-
resentation is encoded by a Convolutional Neural Network
(CNN)-based model to obtain the global topological encod-
ing Zry = Emax (CNN(PL(Wit(G))). Here, &nax () denotes
global max-pooling operation. The global topology encod-
ing encapsulates the global topological features, such as the
equivalent class of connected nodes, cycles, etc. in the graph.
The stability of global persistence diagram representation is a
well-known classical result in persistence homology (Cohen-
Steiner, Edelsbrunner, and Harer 2005; Chazal et al. 2008).
However, given an attacker’s budget of §, the stability of the
encoded global topology is an important result for the prac-
tical purposes of this paper. Theorem 3.2 shows that under
a O(0) perturbation of the input graph, the global topology
encoding is perturbed by O(d + ¢€). Hence, the global topo-
logical encoding inherits the robustness property of persistent
homology and induces robust learning under adversarial at-
tacks.

Proposition 3.2 (Stability of the encoded global topology).



If the landmarks selected for the witness complex induce
an e-net of the graph with ¢ > 0, we obtain that for any
graph perturbation |G — G'||1 = O(9) the global persis-
tence image representation changes by | PI(Wit8'°"(G)) —
PL(Wit&'°"(G"))||oe = O(8 + €), and it reduces to O(), if
we have access to the Céch simplicial complexes for G.

WGTL: Aggregating Global and Local Encodings. We
can aggregate the local and global topology encodings with
the latent embedding of graph convolution layers in different
ways. Figure 1 shows the approach that empirically provides
the most effective defense against adversarial attacks.

The aggregation of the three encodings is computed in two
steps. First, to adaptively learn the intrinsic dependencies
between learned node embedding and latent local topolog-
ical encodings, we utilize the attention mechanism to fo-
cus on the importance of task-relevant components in the
learned representations, i.e. (ag,ar,) = Att(Zg, Z7,).
In practice, we compute attention coefficients as «o; =
softmax; (Y aq tanh (£Z;)), where Yoy € R X% is a linear
transformation, = is the trainable weight matrix, and the soft-
max function is used to normalize the attention vector. Then,
we obtain the final embedding by combining two embeddings
Zpace = ag X Zg + ar, X Zr, . Finally, we combine the
learned embedding Z g with the latent global topological
representation Zr,,, such that Zwgrr, = ZacgZ7,- The
node representation Zwgrr, encapsulates both global and
local topology priors. We call Zw 1, the aggregated topo-
logical priors. We feed Zwgr1, into a graph convolutional
layer and use a differentiable classifier (here we use a softmax
layer) to make node classification. In the following, we show
the stability of the aggregated topological priors.

Proposition 3.3 (Stability of the aggregated topological en-
coding). If the landmarks selected for the witness complex
induce an e-net of the graph with ¢ > 0 and Lgnn is the
Lipschitz constant of the GNNs in Component II, then for
a perturbation |G — G'||l1 = O(9), the encoding ZwegrL
changes by

| Zwern(G) — ZwaTtL(G)|l1 = O((Ce + Lann) (6 + 6)2).

Proposition 3.3 shows that the final representations com-
puted by WGTL are stable under adversarial attacks. The
stability depends on the approximation trade-off induced
by the landmark set and the Lipschitz stability of the GNN
layers (Jia et al. 2023).

3.2 Topological Loss as a Regularizer

In Section 3.1, we propose using the aggregated topology
encodings to predict node labels for downstream node classi-
fication tasks through a GNN backbone. In this case, we use
a supervised loss Ly, that facilitate learning the aggregated
topology priors for classification.

However, the supervised loss function only explicitly en-
forces misclassification constraints on the defense model. It
does not explicitly enforce any topological constraint such
that the topological encodings themselves iteratively become
more robust while training. Hence, for increased robustness,
we propose to use topological loss L;,,,, that explicitly en-
codes the birth and death of the topological features in the
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auxiliary graph (ref. Figure 2) reconstructed from the trans-
former output. Specifically,
q
( ) Y

where m is the number of points in the persistence diagram
of the auxiliary graph reconstructed from the transformer
output and k£ = max{p, ¢}. In practice, we use k = 2. The
use of such topological loss was first proposed for image
segmentation (Hu et al. 2019). Gabrielsson et al. (2020) uses
it as a regularizer in designing GAN and adversarial attacks
on images. In contrast, we use it to induce stability in the en-
coding and to defend against adversarial attacks. The benefits
of using the topological loss are two-fold:
(i) Persistent and Stable Feature Selection: Minimising
Liopo,i causes removal of topological features with smaller
persistence, i.e., (d; — b;). As such, the regularizer acts as a
sparsity-inducing feature selector. By minimizing L;p,, We
are training to learn latent representation such that only the
most persistent features remain in the encoded local topology.
Such features are known to be more stable and represent
more robust structures of the graph.
(ii) Robustness to Local Perturbations: A localized attack
perturbing certain nodes or edges is expected to appear as
topological noise in the final persistent diagram, and should
exhibit lower persistence. Since minimizing Ly, forces the
local topology encodings to eliminate features with small
persistences, using L., as a regularizer with L, induces
robustness to local perturbations in final classification tasks.
Proposition 3.4 quantifies the stability of the topological
regularizer L, 1 under any attack with perturbation budget
O(9). Specifically, it shows that the stability depends on
a trade-off between the maximum persistence of the final
graph representation, A (G), in Figure 2, and the number of
non-zero persistent features in the final encoding. Hence, it
reflects our discussion above.

m

> (di = b)?

=1

s di + b

Ltopo,k(T(9))

Proposition 3.4 (Stability of Ly,,). Let us assume that the
cardinality of any e-neighborhood of G grows polynomially,
ie. C. = O(e™™M) for an M > 0. If m is the number of
points in the persistence diagram, 2k = 2max{p, q} > M,
and A(G) is the auxiliary graph constructed from the local
topology encodings (Fig. 2), Liopo.k(T(G)) is stable w.r.t. a
perturbation of G, i.e. |G — G'||; = 0.

| Ltopok(T(G)) = Ltopo,r(T(G"))]
= O ((e~*MDiam(A(G)) + me~2*Diam(G)?*) 4) .

4 Experimental Evaluation

We evaluate the proposed WGTL on the node classifica-
tion task for clean and attacked graphs across a range of
perturbation rates. We validate the proposed approach on
six benchmark datasets: Citeseer, Cora, Pubmed, Polblogs,
OGBN-arXiv, and Snap-patents. We report the mean and
standard deviation of accuracies over 10 runs. The best
performance is highlighted in bold while the best result on
a dataset for a given perturbation rate is indicated by *.
Note that, throughout our experiments, we use 0-dimensional



Dataset Models Perturbation Rate Dataset Model Perturbation Rate
0% 5% 10% 0% 5% 10%
Pro-GNN 82.98+0.23 80.14%£1.34 71.594+1.33 GCN 82.874+0.83  76.554+0.79 70.39+1.28
Pro-GNN+WGTL 83.85+0.38 81.90+0.73 72.51+0.76 GCN + WGTL 83.83+0.55 78.63+0.76 73.41+0.82
Cora-ML GCN+GNNGuard 83.214+0.34  76.5740.50  69.13+0.77 ChebNet 80.74+0.42  74.35+12  66.62+1.44

GCN+GNNGuard+WGTL *84.78+0.43 *83.23+0.82 *79.96:+0.49
SimP-GCN 79.52+1.81 7475£1.40 70.87+1.70
SimP-GCN+WGTL ~ 81.49+0.52  76.65+0.65 72.88+0.83

ProGNN 72.34£0.99 68.96£0.67 67.36+1.12
ProGNN+WGTL 72.83+0.94 71.85+0.74 70.70+0.57

Citescer  GCN+GNNGuard 71.824043  70.79£0.22  66.86+0.54
GCN+GNNGuard+WGTL  73.37+0.63 72.57+0.17 66.93+0.21

SimP-GCN 73.73£1.54 73.06+£2.09 72.51+1.25
SimP-GCN+WGTL “74.324£0.19 *74.05+0.71 *73.09+0.50
Pro-GNN 87.33+£0.18  87.25+0.09 87.204+0.12

Pro-GNN + WGTL
Pubmed GCN+GNNGuard

87.90+£0.30 *87.77+0.08 *87.67+0.22
83.63+0.08 79.02+0.14 76.584+0.16

GCN+GNNGuard+WGTL OOM OOM OOM
SimP-GCN *88.11+0.10 86.984+0.19 86.30+0.28

SimP-GCN+WGTL OOM OOM OOM
GCN+GNNGuard 95.03+£0.25 73.25 £0.16 72.76+0.75

GCN+GNNGuard+WGTL  *96.22+0.25 *73.62+0.22 *73.72+1.00

SimP-GCN 89.78+£6.47 65.75£5.03 61.531+6.41
SimP-GCN+WGTL 94.56+0.24  69.784+4.10 69.55+4.42

Polblogs

Table 1: Comparison of performances (avg. accuracy=+std.)
with existing defenses under mettack.

topological features. All the hyperparameters are chosen by
performing cross-validation. We defer the dataset descrip-
tions, implementation details, ablation studies, impact of
the #landmarks on performance, comparison with Vietoris-
Rips, and additional experimental results such as handling
node features, heterophilic graphs, adaptive attacks, and
the adoption of other topological vectorization methods in
WGTL to the Appendix section in the extended paper (Arafat
et al. 2024). Our datasets and source codes are available at
https://github.com/toggled/WGTL.

Landmark Selection for Local and Global Topology En-
codings. There are several approaches to selecting landmarks,
e.g., random selection (De Silva and Carlsson 2004), max-
min selection (De Silva and Carlsson 2004), e-net (Arafat,
Basu, and Bressan 2020) based and centrality-based selec-
tion (Chen and Gel 2023). In our experiments, we select
landmarks based on degree centrality. As shown by Chen
and Gel (2023), doing so helps to improve the classification
performance. On Cora-ML, Citeseer, and Polblogs, we select
5% nodes, on Pubmed and Snap-patents we select 2% nodes
and on OGBN-arXiv we select 0.05% nodes as landmarks to
keep #landmarks roughly invariant across datasets.
Adversarial Attacks: Local and Global. We deploy four
local and global poisoning attacks, with perturbation rates,
i.e., the ratio of changed edges, from 0% to 10%, to eval-
uate the robustness of WGTL. We consider a fixed GCN
without weight re-training as the surrogate for all attacks.
As alocal attack, we deploy nettack (Ziigner, Akbarnejad,
and Giinnemann 2018). Due to the stability of WGTL and
topological regularizer, we expect to be robust to such lo-
cal attacks. As global (non-targeted) poisoning attacks, we
deploy mettack (Ziigner and Giinnemann 2019a), and two
topological attacks, namely PGD (Xu et al. 2019) and Meta-
PGD (Mujkanovic et al. 2022). Mettack treats the graph as a
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Cora-ML.  ChebNet+ WGTL ~ 82.96+1.08 76.00+1.22 69.49-:0.89
GAT 84254067 79.88£1.09 72.63%£1.56

GAT + WGTL *86.07£2.10  80.80+0.87 75.80+:0.79

GraphSAGE 81.00£0.27 74.81£12 70.92%1.18

GraphSAGE + WGTL  83.6310.35 *82.61+0.65 *81.19+1.13

GCN 9440E1.47 71414242 69.16£1.86

GCN + WGTL “95.954+0.15  74.62+0.42  72.84+0.86
ChebNet 73.10£7.13  67.63£1.71  67.36+0.85
ChebNet + WGTL 92.50+£1.10 71.17+£0.10  68.03+0.87

Polblogs

GAT 95.28+0.51  75.83£0.90 73.11£1.20
GAT + WGTL 95.87+0.26  *83.13+0.32 80.06+0.50

GraphSAGE 94.52+0.27 77.44 £ 1.71 74.66+0.85
GraphSAGE + WGTL  95.58+0.50  82.62+0.65 *81.49+0.86

Table 2: Robustness of various backbone GNNs (avg.
accuracy=+std.) under mettack.

hyperparameter and greedily selects perturbations based on
meta-gradient for node pairs until the budget is exhausted.
We keep all the default parameter settings (e.g., A = 0) fol-
lowing the original implementation (Ziigner and Gilinnemann
2019a). For Cora-ML, Citeseer and Polblogs, we apply the
most effective Meta-Self variant, while for Pubmed, we apply
the approximate variant (A-Meta-Self) to save memory and
time (Jin et al. 2020). Though global attacks are expected
to be more challenging while using topological features, we
demonstrate that WGTL still yields significant robustness.
Further details on attack implementations and attackers’ bud-
gets are discussed in the extended paper (Arafat et al. 2024),
as are the results for PGD and Meta-PGD attacks.

Objectives. We aim to answer five questions: (Q1) Can
WGTL enhance the robustness of the existing defenses? (Q2)
Can WGTL enhance the robustness of existing backbone
graph convolution layers? (Q3) Is WGTL still effective when
the topological features are computed on poisoned graphs
instead of clean graphs? (Q4) How does WGTL perform on
large graphs? (Q5) Is WGTL computationally efficient?

Q1. Performance of WGTL Defense w.r.t. Existing De-
fenses. We compare our method with three state-of-the-art
defenses: Pro-GNN (Jin et al. 2020), GNNGuard (Zhang
and Zitnik 2020), and SimP-GCN (Jin et al. 2021a). Table 1
illustrates the comparative performances on three citation
networks under aglobal attack, i.e. mettack. We observe
that our Pro-GNN+WGTL is always better than other base-
lines on all datasets. Following Jin et al. (2020), we omit
Pro-GNN for Polblogs. As a consequence, we gain 0.68% -
4.96% of relative improvements on Cora-ML and Citeseer.
Similarly, we observe that GCN+GNNGuard+WGTL out-
performs GCN+GNNGuard and SimP-GCN+WGTL outper-
forms Simp-GCN by 0.10% - 15.67% and 2.4% - 5.7%, re-
spectively, across all datasets. The results reveal that WGTL
enhances not only model expressiveness but also the robust-
ness of the GNN-based models. The performance comparison
under nettack is in the Appendix section of the extended pa-
per (Arafat et al. 2024).



Dataset Models Perturbation Rate
0% 5% 10%

GCN 82.874+0.83 76.55+0.79 70.39+1.28
GCN+WGTLp 83.83+0.55 76.96+0.76 71.31+0.85
GAT 84.254+0.67 79.88+1.09 72.63+1.56
GAT+WGTLp *86.07+2.10 81.43+0.75 *73.74+1.92
Cora-ML GraphSAGE 81.00+0.27 74.81+1.20 70.92+1.18
GraphSAGE+WGTLp 83.63+0.35 *82.15+1.25 73.57+0.73
ProGNN 82.984+0.23 80.14+1.34 71.59+1.33
ProGNN+WGTLp 83.85+0.38 81.69+1.83 72.71+1.26
GCN+GNNGuard 83.21+0.34 76.57+0.50 69.13+0.77
GCN+GNNGuard+WGTLp 84.78+0.43 77.08+0.32 70.15+0.89
GCN 94.40+1.47 71.41+2.42 69.16+1.86
GCN+WGTLp 95.95+0.15 73.02+1.13 74.524+0.28
GAT 95.28+0.51 75.83+0.90 73.11+1.20
Polblogs GAT+WGTLp 95.87+0.26 76.05+0.79 74.21+0.74
GraphSAGE 94.54+0.27 77.44+1.71 74.66+0.85
GraphSAGE+WGTLp 95.58+0.50 *78.65+1.32 *74.93+0.81
GCN+GNNGuard 95.03+0.25 73.25 £0.16 72.76+0.75
GCN+GNNGuard+WGTLp *96.22+0.25 73.62+0.22 73.72+1.00

Table 3: Performance on poisoned graph (avg. accuracy=std.)
under mettack.

Q2. WGTL Enhances Robustness of GNNs. WGTL is flex-
ible in the sense that it can employ existing GNN layers to
enhance their robustness. To be precise, we have employed
the existing GNN backbones as component II in Figure 1 to
enhance their robustness. Since global attacks target global
graph topology, global poisoning attacks are supposed to be
more challenging for the proposed topology-based defense
WGTL. Despite that, we observe that WGTL consistently
improves the robustness of all backbone GNNs in Table 2.
The performance of our method, including that of the back-
bone GNNs, deteriorates faster on Polblogs than on the other
datasets. This is because Polblogs does not have node fea-
tures, and having informative node features can help GNN
differentiate between nodes and learn meaningful represen-
tations despite changes in the graph structure. With node
features lacking, the Polblogs graph has comparatively less
resilience against graph structural perturbations. The results
with the SGC backbone (Wu et al. 2019a) are in the Appendix
section of the extended paper (Arafat et al. 2024).

Q3. Performance of WGTL on Poisoned Graphs. So far,
the local and global topological features are computed on
clean graphs assuming that these features can be computed
before the attacker poisons the graph. However, such an as-
sumption is restrictive as the attacker might poison the graph
at any point before and during training. As a result, the topo-
logical features computed by WGTL might also be poisoned,
as they were computed based on the poisoned graph. WGTLp
employs poisoned graphs as inputs in the schematics of Fig-
ure 1 and 2. We present the performance of WGTLp on
Cora-ML and Polblogs under mettack in Table 3. We observe
a consistent improvement over the baseline models across
various datasets and perturbation rates. In this setting, we
find GAT+WGTLp and GraphSAGE+WGTLp to be the best
performing models.

Q4. Performance of WGTL on a large-scale graph. We
have applied the PRBCD attack to generate the perturbed
OGBN-arXiv graph since we found that other attacks, such
as Mettack and Nettack, do not scale sufficiently well (Geisler
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Models Perturbation Rate
0% 10%
GCN 27.33 21.56
GCN+WGTLp 28.32 22.89

Table 4: Performance on OGBN-arXiv under PRBCD attack.

Datasets/ Landmark Local feat. Global feat.

(# Landmarks) selection time comput. time comput. time
Cora-ML/124 0.01+0.01 0.12+0.03 5.11+0.13
Citeseer/105 0.01+0.01 0.16£0.02 5.23+1.22

Polblogs/61 0.0140.00 0.0740.01 4.641+0.2

Snap-patents/91 0.03£0.02 0.64+0.00 7.54+1.15
Pubmed/394 0.07+0.01 0.51+0.03 27.83+0.47
OGBN-arXiv/84 1.02 £0.00 12.7940.31 83.04+2.19

Table 5: Efficiency of WGTL. All the times are in seconds.

etal. 2021). Following Geisler et al. (2021), we train a 3-layer
GCN to generate attacks. We then present the comparison
between GCN and GCN + WGTLp on clean (0%) and poi-
soned (10%) perturbed graphs in Table 4. We observe that
the GCN equipped with our WGTL outperforms GCN on
both clean and perturbed OGBN-arXiv.

Q5. Computational Complexity and Efficiency of WGTL.
Landmark selection (top-|£| degree nodes) has complexity
O(N log(N)). To compute witness features, we compute (1)
landmarks-to-witness distances costing O(|£|(N +|&])) due
to BFS-traversal from landmarks, (2) landmark-to-landmark
distances costing O(|£|?), and finally (3) PH via boundary
matrix construction and reduction. Matrix reduction algo-
rithm costs O(¢?), where ( is the #simplices in a filtration.
Overall, the computational complexity of computing witness
topological feature on a graph is O(|£|(N +|€]) +|£[2+¢3).
Table 5 shows the total CPU-time to compute Witness topo-
logical features broken down into the time spent to select
landmarks, to compute local and global topological features.
We find that on all the graphs except Pubmed and OGBN-
arXiv, the total computation time is < 9 seconds. On Pubmed,
it takes ~28 seconds, and on large-scale graph OGBN-arXiv,
it takes ~96 seconds.

5 Conclusion and Future Works

By harnessing the strengths of witness complex to efficiently
learn topological representations based on the subset of the
most essential nodes as skeleton, we have proposed a novel
topological defense against adversarial attacks on graphs,
WGTL. WGTL is versatile and can be readily integrated with
any GNN architecture or another non-topological defense,
leading to substantial gains in robustness. We have derived
theoretical properties of WGTL, both at the local and global
levels as well as illustrated its utility across a wide range
of adversarial attacks. In the future, we plan to explore the
utility of WGTL for adversarial learning of time-evolving
networks, armed with a closely related Dowker complex on
graphs (Choi et al. 2024; Li et al. 2024).



Acknowledgements

This work was supported by the NSF grant TIP-2333703 and
the ONR grant N00014-21-1-2530. Also, the paper is based
upon work supported by (while Y.R.G. was serving at) the
NSF. The views expressed in the article do not necessarily
represent the views of NSF or ONR. D. Basu acknowledges
the ANR JCJC project REPUBLIC (ANR-22-CE23-0003-
01), the PEPR project FOUNDRY (ANR23-PEIA-0003), and
the CHIST-ERA project CausalXRL (ANR-21-CHR4-0007).

References

Adams, H.; Emerson, T.; Kirby, M.; Neville, R.; Peterson, C.;
Shipman, P.; Chepushtanova, S.; Hanson, E.; Motta, F.; and
Ziegelmeier, L. 2017. Persistence images: A stable vector
representation of persistent homology. Journal of Machine
Learning Research, 18.

Arafat, N. A.; Basu, D.; and Bressan, S. 2020. e-net In-
duced Lazy Witness Complexes on Graphs. arXiv preprint
arXiv:2009.13071.

Arafat, N. A.; Basu, D.; Gel, Y.; and Chen, Y. 2024.
When Witnesses Defend: A Witness Graph Topological
Layer for Adversarial Graph Learning. arXiv preprint
arXiv:2409.14161.

Benson, A. R.; Abebe, R.; Schaub, M. T.; Jadbabaie, A.; and
Kleinberg, J. 2018. Simplicial closure and higher-order link
prediction. Proceedings of the National Academy of Sciences,
115(48): E11221-E11230.

Borgatti, S. P.; Carley, K. M.; and Krackhardt, D. 2006. On
the robustness of centrality measures under conditions of
imperfect data. Social Networks, 28(2): 124—136.

Carriere, M.; Chazal, F.; Glisse, M.; Ike, Y.; Kannan, H.;
and Umeda, Y. 2021. Optimizing persistent homology based
functions. In Proceedings of the International Conference on
Machine Learning, 1294—1303.

Carriere, M.; Chazal, F.; Ike, Y.; Lacombe, T.; Royer, M.;
and Umeda, Y. 2020. Perslay: A neural network layer for
persistence diagrams and new graph topological signatures.

In Proceedings of the International Conference on Artificial
Intelligence and Statistics, 2786-2796.

Chazal, F.; Cohen-Steiner, D.; Guibas, L. J.; and Oudot, S.
2008. The stability of persistence diagrams revisited.

Chen, D.; O’Bray, L.; and Borgwardt, K. 2022. Structure-
aware transformer for graph representation learning. In Pro-
ceedings of the International Conference on Machine Learn-
ing, 3469-3489. PMLR.

Chen, Y.; Coskunuzer, B.; and Gel, Y. 2021. Topological rela-
tional learning on graphs. In Advances in Neural Information
Processing systems, volume 34, 27029-27042.

Chen, Y.; and Gel, Y. R. 2023. Topological Pooling on
Graphs. In AAAI, volume 37.

Chen, Y.; Sizikova, E.; and Gel, Y. R. 2022. TopoAttn-Nets:
Topological Attention in Graph Representation Learning. In
ECML-PKDD, 309-325.

Choi, J. W.; Chen, Y.; Frias, J.; Castillo, J.; and Gel, Y. 2024.
Revisiting Link Prediction with the Dowker Complex. In
PaKDD, 418-430. Springer.

15415

Cohen-Steiner, D.; Edelsbrunner, H.; and Harer, J. 2005. Sta-
bility of persistence diagrams. In Proceedings of the Annual
Symposium on Computational Geometry, 263-271.

De Silva, V.; and Carlsson, G. 2004. Topological estimation
using witness complexes. In Proceedings of the Eurographics
conference on Point-Based Graphics, 157-166. Eurographics
Association.

Edelsbrunner; Letscher; and Zomorodian. 2002. Topological
persistence and simplification. Discrete & Computational
Geometry, 28: 511-533.

Engstrom, L.; Ilyas, A.; Santurkar, S.; Tsipras, D.; Tran, B.;
and Madry, A. 2019. Adversarial robustness as a prior for
learned representations. arXiv preprint arXiv:1906.00945.

Entezari, N.; Al-Sayouri, S. A.; Darvishzadeh, A.; and Pa-
palexakis, E. E. 2020. All you need is low (rank) defending
against adversarial attacks on graphs. In Proceedings of the
International Conference on Web Search and Data Mining,

169-177.

Feng, B.; Wang, Y.; and Ding, Y. 2021. UAG: Uncertainty-
aware attention graph neural network for defending adversar-
ial attacks. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(8): 7404-7412.

Feng, F.; He, X.; Tang, J.; and Chua, T.-S. 2019. Graph ad-
versarial training: Dynamically regularizing based on graph
structure. IEEE Transactions on Knowledge and Data Engi-
neering, 33(6): 2493-2504.

Gabrielsson, R. B.; Nelson, B. J.; Dwaraknath, A.; and
Skraba, P. 2020. A topology layer for machine learning.
In Proceedings of the International Conference on Artificial
Intelligence and Statistics, 1553—-1563.

Gebhart, T.; Schrater, P.; and Hylton, A. 2019. Characterizing
the shape of activation space in deep neural networks. In The
IEEE International Conference On Machine Learning And
Applications, 1537-1542.

Geisler, S.; Schmidt, T.; Sirin, H.; Ziigner, D.; Bojchevski,
A.; and Glinnemann, S. 2021. Robustness of graph neural net-
works at scale. Advances in Neural Information Processing
Systems, 34: 7637-7649.

Goibert, M.; Ricatte, T.; and Dohmatob, E. 2022. An Ad-
versarial Robustness Perspective on the Topology of Neural
Networks. In ML Safety Workshop at NeurIPS 2022.

Giinnemann, S. 2022. Graph neural networks: Adversarial
robustness. Graph Neural Networks: Foundations, Frontiers,
and Applications, 149-176.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in Neural
Information Processing Systems, 30.

Hofer, C.; Graf, F.; Rieck, B.; Niethammer, M.; and Kwitt,
R. 2020. Graph filtration learning. In Proceedings of the
International Conference on Machine Learning, 4314-4323.
PMLR.

Horn, M.; De Brouwer, E.; Moor, M.; Moreau, Y.; Rieck,
B.; and Borgwardt, K. 2022. Topological Graph Neural
Networks. In Proceedings of the International Conference
on Learning Representations.



Hu, X.; Li, F,; Samaras, D.; and Chen, C. 2019. Topology-
preserving deep image segmentation. In NeurIPS, volume 32.

In, Y.; Yoon, K.; Kim, K.; Shin, K.; and Park, C. 2024. Self-
Guided Robust Graph Structure Refinement. In Proceedings
of the ACM on Web Conference 2024, 697-708.

Jia, Y.; Zou, D.; Wang, H.; and Jin, H. 2023. Enhancing Node-
Level Adversarial Defenses by Lipschitz Regularization of
Graph Neural Networks. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, 951-963.

Jin, W.; Derr, T.; Wang, Y.; Ma, Y; Liu, Z.; and Tang, J. 2021a.
Node similarity preserving graph convolutional networks. In
Proceedings of the ACM International Conference on Web
Search and Data Mining, 148-156.

Jin, W.; Li, Y.; Xu, H.; Wang, Y,; Ji, S.; Aggarwal, C.; and
Tang, J. 2021b. Adversarial attacks and defenses on graphs.
ACM SIGKDD Explorations Newsletter, 22(2): 19-34.

Jin, W.; Ma, Y.; Liu, X.; Tang, X.; Wang, S.; and Tang, J. 2020.
Graph structure learning for robust graph neural networks. In
KDD, 66-74.

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

Kong, K.; Li, G.; Ding, M.; Wu, Z.; Zhu, C.; Ghanem, B.;
Taylor, G.; and Goldstein, T. 2022. Robust Optimization as
Data Augmentation for Large-scale Graphs. arXiv preprint
arXiv:2010.09891.

Li, H.; Jiang, H.; Jiajun, F;; Ye, D.; and Du, L. 2024. Dynamic
Neural Dowker Network: Approximating Persistent Homol-
ogy in Dynamic Directed Graphs. In KDD, 1554—1564.

Liu, A.; Li, W.; Li, T.; Li, B.; Huang, H.; and Zhou,
P. 2023. Towards Inductive Robustness: Distilling and
Fostering Wave-induced Resonance in Transductive GCN's
Against Graph Adversarial Attacks. arXiv preprint
arXiv:2312.08651.

Mujkanovic, E.; Geisler, S.; Glinnemann, S.; and Bojchevski,
A. 2022. Are Defenses for Graph Neural Networks Ro-
bust? Advances in Neural Information Processing Systems,
35: 8954-8968.

Rieck, B.; Yates, T.; Bock, C.; Borgwardt, K.; Wolf, G.; Turk-
Browne, N.; and Krishnaswamy, S. 2020. Uncovering the
topology of time-varying fMRI data using cubical persis-
tence. Advances in Neural Information Processing systems,
33: 6900-6912.

Sun, L.; Dou, Y.; Yang, C.; Zhang, K.; Wang, J.; Philip, S. Y.;
He, L.; and Li, B. 2022. Adversarial attack and defense on
graph data: A survey. IEEE Transactions on Knowledge and
Data Engineering.

Tang, X.; Li, Y.; Sun, Y.; Yao, H.; Mitra, P.; and Wang,
S. 2020. Transferring robustness for graph neural network

against poisoning attacks. In Proceedings of the International
Conference on Web Search and Data Mining, 600-608.

Torres, L.; Blevins, A. S.; Bassett, D.; and Eliassi-Rad, T.
2021. The why, how, and when of representations for com-
plex systems. SIAM Review, 63(3): 435-485.

15416

Wu, E; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019a. Simplifying graph convolutional networks.
In Proceedings of the International Conference on Machine
Learning, 6861-6871. PMLR.

Wu, H.; Wang, C.; Tyshetskiy, Y.; Docherty, A.; Lu, K;
and Zhu, L. 2019b. Adversarial examples for graph data:
Deep insights into attack and defense. In Proceedings of
the International Joint Conference on Artificial Intelligence,
4816-4823.

Xu, K.; Chen, H.; Liu, S.; Chen, P.-Y.; Weng, T.-W.; Hong,
M.; and Lin, X. 2019. Topology Attack and Defense for
Graph Neural Networks: An Optimization Perspective. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence.

Yan, Z.; Ma, T.; Gao, L.; Tang, Z.; and Chen, C. 2021. Link
prediction with persistent homology: An interactive view.
In Proceedings of the International Conference on Machine
Learning, 11659-11669.

Yan, Z.; Ma, T.; Gao, L.; Tang, Z.; Wang, Y.; and Chen, C.
2022. Neural approximation of extended persistent homology
on graphs. In ICLR 2022 Workshop on Geometrical and
Topological Representation Learning.

Zhang, A.; and Ma, J. 2020. Defensevgae: Defending against
adversarial attacks on graph data via a variational graph au-
toencoder. arXiv preprint arXiv:2006.08900.

Zhang, X.; and Zitnik, M. 2020. Gnnguard: Defending graph
neural networks against adversarial attacks. Advances in
Neural Information Processing systems, 33: 9263-9275.

Zhao, Q.; and Wang, Y. 2019. Learning metrics for
persistence-based summaries and applications for graph clas-
sification. Advances in Neural Information Processing Sys-
tems, 32.

Zhu, D.; Zhang, Z.; Cui, P.; and Zhu, W. 2019. Robust
graph convolutional networks against adversarial attacks. In
Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 1399-1407.

Zomorodian, A. 2010. Fast construction of the Vietoris-Rips
complex. Computers & Graphics, 34(3): 263-271.

Zomorodian, A. J. 2005. Topology for computing, volume 16.
Cambridge university press.

Ziigner, D.; Akbarnejad, A.; and Giinnemann, S. 2018. Ad-
versarial attacks on neural networks for graph data. In KDD,
2847-2856.

Ziigner, D.; and Gilinnemann, S. 2019a. Adversarial Attacks
on Graph Neural Networks via Meta Learning. In Proceed-
ings of the International Conference on Learning Represen-
tations.

Ziigner, D.; and Gilinnemann, S. 2019b. Certifiable robustness
and robust training for graph convolutional networks. In
KDD, 246-256.



