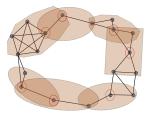
ϵ -net Induced Lazy Witness Complexes on Graphs

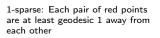
Naheed Anjum Arafat¹, Debabrota Basu², Stéphane Bressan¹

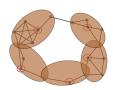
¹National University of Singapore ²Chalmers University of Technology

ATDA2019: Workshop on Applications of Topological Data Analysis


September 16, 2019

イロト イヨト イヨト イヨト


ϵ -net Induced LW Complex on Graph Metric Space


We address the issue of *scalable and fast computation of approximate persistent* homologies using ϵ -nets.

 ϵ -net of a graph is an ϵ -sample and ϵ -sparse subset of its vertices.

1-sample : Each vertex is within geodesic 1 from some red vertex

1-net: Set of points that are 1-sparse and 1-sample

 ϵ -net as landmark set induces Lazy Witness filtration that approximates Rips filtration and facilitates faster computation.

Arafat, Basu, Bressan NUS, Chalmers

e-net Induced Lazy Witness Complexes

ATDA 2019 1 / 3

Theoretical and Algorithmic Contributions

Quality of ϵ -net landmarks

 ϵ -net of a weighted graph is an ϵ -approximation of the vertex set V w.r.t. Hausdroff distance.

< A >

Quality of ϵ -net landmarks

 ϵ -net of a weighted graph is an ϵ -approximation of the vertex set V w.r.t. Hausdroff distance.

Quality of Rips Approximation

 ϵ -net induced LW filtration is a weak 3-approximation of ϵ -net induced Rips filtration.

4 A N 4

Quality of ϵ -net landmarks

 ϵ -net of a weighted graph is an ϵ -approximation of the vertex set V w.r.t. Hausdroff distance.

Quality of Rips Approximation

 ϵ -net induced LW filtration is a weak 3-approximation of ϵ -net induced Rips filtration.

Size of ϵ -net

Size of an ϵ -net is at most $(\frac{\Delta}{\epsilon})^{O(\log(\frac{|V|}{\epsilon}))}$ for an unweighted graph of diameter Δ .

Quality of ϵ -net landmarks

 ϵ -net of a weighted graph is an ϵ -approximation of the vertex set V w.r.t. Hausdroff distance.

Quality of Rips Approximation

 ϵ -net induced LW filtration is a weak 3-approximation of ϵ -net induced Rips filtration.

Size of ϵ -net

Size of an ϵ -net is at most $\left(\frac{\Delta}{\epsilon}\right)^{O(\log(\frac{|V|}{\epsilon}))}$ for an unweighted graph of diameter Δ .

Algorithmic

We propose three algorithms to construct ϵ -net of a graph. We experimentally observe that **Iterative** ϵ -net algorithm is efficient in practice.

▲ @ ▶ ▲ ≥ ▶ ▲

- to obtain better approximation guarantees for LW filtration;
- to investigate, compare and unify approximation schemes of Rips filtration such as sparse Rips, graph induced complex etc;
- to design scalable and fast algorithms for any metric space;
- to efficiently apply persistent homologies to machine learning and statistical problems.

!! See you at the poster session !!

< 🗇 🕨 < 🚍 🕨