
Hypergraph Drawing by Force-Directed
Placement

Naheed Anjum Arafat(B) and Stéphane Bressan

School of Computing, National University of Singapore, 13 Computing Drive,
Singapore 117417, Singapore

e0001887@u.nus.edu, steph@nus.edu.sg

Abstract. We propose a family of algorithms that transform a hyper-
graph drawing problem into a graph drawing problem and leverage force-
directed graph drawing algorithms in order to draw hypergraphs. We
propose and discuss a number of criteria to evaluate the quality of the
drawings from the points of view of aesthetics and of visualization and
analytics. We empirically and comparatively evaluate the quality of the
drawings based on these criteria on both synthetic and real data sets.
Experiments reveal that the algorithms are generally effective and the
drawings generated are aesthetically pleasing.

Keywords: Hypergraph · Visualization · Force-directed graph drawing

1 Introduction

We address the problem of drawing hypergraphs. A Hypergraph is a general-
ization of a graph where multi-ary relations exists among the objects including
binary relations. Edges of a hypergraph are called hyperedges. Hypergraphs have
found application in many areas of science [5,8,9,12,15] and a key challenge
in visualizing these hypergraphs is the exponential increase in the number of
potential relations with the number of objects [2]. The need to perform visual
analytics on data with multi-ary, complex relations calls for practically effective
and visually pleasing drawings of hypergraphs.

Fruchterman and Reingold, in their 1991 seminal paper [11], presented the
popular force-based graph layout algorithm that bears their names. In this algo-
rithm, the graph is modeled as a physical system where vertices are attracted
and/or repelled according to some force function, eventually resulting in an equi-
librium configuration. The family of algorithms proposed in this paper transform
a hypergraph into a graph and leverage force-directed drawing algorithms to
draw the graph. The final positions of the vertices of the graph are then used to
draw the hyperedges of the hypergraph.

Inspired by the desirable properties of hypergraph drawing proposed by
Mäkinen [13], we propose and discuss some criteria for good hypergraph draw-
ing. We also devise several metrics to empirically and comparatively evaluate
our algorithms based on both synthetic and real data sets. The experiments
c© Springer International Publishing AG 2017
D. Benslimane et al. (Eds.): DEXA 2017, Part II, LNCS 10439, pp. 387–394, 2017.
DOI: 10.1007/978-3-319-64471-4 31

388 N.A. Arafat and St. Bressan

reveal that the approach is practical, efficient and generally effective, and, more
importantly, the drawings generated are not only aesthetically pleasing but also
readable for the purpose of visualization and analytics.

2 Related Work

Two classes of hypergraph drawing have been frequently used in the literature
as mentioned by Mäkinen [13] namely, Subset based and Edge based. In both of
them, vertices of the hypergraphs are drawn as points in the plane. In Edge based
drawings, hyperedges are drawn as smooth curves connecting their vertices. In
Subset based drawings, hyperedges are drawn as closed curves enveloping their
vertices.

Mäkinen [13] formulates the desirable properties of a subset based hyper-
graph drawing. Bertault F. and Eades P. [4] demonstrate a method for drawing
hypergraph in subset standard. The drawing algorithm constructs a Euclidean
Steiner tree from the position of the vertices in a hyperedge, uses force-directed
graph drawing algorithm to get the location of the vertices and draws a contour
around the edges of the tree.

Since hyperedges are sets, visualizing hypergraphs is closely related to the
approaches for visualizing sets. Euler diagram is amongst the earliest set visu-
alization methods. Closed curves such as ellipses, circles or polygons represent
sets and curve overlaps represent set relations. Many algorithms exist for draw-
ing Euler diagrams. They differ from each other by their definitions of Euler
diagram and drawable instances. Flower and Howse [10] define concrete Euler
diagram and propose an algorithm to generate concrete diagrams automatically
up to three sets. An extended definition of Euler diagram is given in [18] and
the problem of generating diagrams up to eight sets is addressed. It is worth
to mention that, the Subset based drawings differ from Euler diagrams in that
the former does not impose regional constraints (e.g. not allowing empty zones,
allowing exactly two points of intersections between contours representing sets)
as the latter [16].

Recently, Simonetto et al. [17] propose an approach for generating Euler-like
diagrams which are Euler diagrams with no regional restrictions. The sets are
drawn as closed bezier curves. Subset based drawings such as the one presented in
this paper are closely related to Euler-like drawings such as the one proposed by
Simonetto et al. [17]. Both of these methods draw sets spatially repositioning the
set elements and thus do not cater to the cases where preserving the semantics of
the layout is important (e.g. scatter plots, geographical maps). Other approaches
such as Bubble Sets [6], LineSets [1], Kelp diagrams [7] and KelpFusion [14] are
designed for those cases. Simonetto et al. [17] applies a force-directed algorithm
that preserves edge-crossing properties on the intersection graph of the hyper-
graph whereas our algorithm is able to apply any force-directed algorithm on a
class of graphs derived from the hypergraph. Simonetto et al. [17] approximates
the set boundaries by computing polygons whereas our algorithm computes con-
vex polygons of the set of points. Thus the resulting diagram might be concave [1]
violating one of the aesthetics we propose in this paper.

Hypergraph Drawing by Force-Directed Placement 389

3 Aesthetics

We propose the following criteria of a good hypergraph drawing.
Firstly, The Concavity metric refers to the number of non-convex hyperedge

drawings drawn by an algorithm. Since convex shapes are visually simpler, min-
imizing non-convex shapes results in good hypergraph drawing. It is to be noted
that, minimizing non-convex shapes i.e. minimizing the Concavity metric helps
ensure the first criterion as well.

Secondly, The Planarity metric is defined as the number of non-adjacent
hyperedge crossings of a drawing. Drawing of a hypergraph, ideally, should have
no crossing between any pair of non-adjacent hyperedges. In practice, however,
having a crossing-free drawing of a hypergraph is rather difficult. Thus it is desir-
able to have as little non-adjacent hyperedge crossing (Planarity) as possible.
Drawings with better Planarity help avoid clutter and thus ambiguity of the
relations being represented.

Fig. 1. Two drawings of the hyperedges {a, b, c}, {b, f}, {d, e, f}. The drawing on the
left has a concave shape, crossing between a non-adjacent hyperedge pair, poor Cov-
erage and non-uniform distribution of vertices (clutter). The drawing on the right is
aesthetically superior to the one on the left as it has no concavity, no crossing, com-
paratively better Coverage and Regularity.

Thirdly, The Coverage metric refers to the ratio of the ‘mean area per
vertex’ of the drawing to the ‘mean area per vertex’ of the entire drawing
canvas. The ‘mean area per vertex’ of a drawing of a hypergraph H(X,E),
Mean-APVdrawing(H) is defined as

Mean-APVdrawing(H) =

∑|E|
i=1

Area(Ei)
|Ei|

|E| (1)

where Area(Ei) is the area of the shape representing Ei and |Ei| is the number of
vertices in the hyperedge Ei (the cardinality of Ei). The ‘Mean area per vertex’
of the drawing canvas, Mean-APVcanvas is computed as -

Mean-APVcanvas(H) =
Areacanvas

|X| (2)

where, Areacanvas is the area of the drawing canvas. Thus, the Coverage of the
hypergraph H(X,E) is defined as

Coverage(H) =
Mean-APVdrawing(H)
Mean-APVcanvas(H)

. (3)

390 N.A. Arafat and St. Bressan

Maximizing the Coverage metric implies that the drawing canvas is utilized
properly by the drawing, in other words, the drawing is sparse in some way. A
Coverage value close to 1 implies almost 100% utilization of the drawing area.

Fourthly, The Regularity metric is a measure of uniformity of the vertices over
the drawing canvas. Maximizing the Regularity criterion helps ensure less clutter
of the vertices over the drawing canvas. Since the Coverage criteria itself fails
to capture uniformity of vertices in cases of drawings with crossings, Regularity
gives insights into the distribution of vertices over the drawing area in those
cases.

Figure 1 illustrates how the proposed metrics encapsulate the aesthetics of a
drawing. Interested readers may refer to [3] for implementation of these metrics.

4 Algorithms

The family of algorithms we propose initializes the coordinates of the position of
the vertices of the hypergraph in a certain way, transforms the input hypergraph
into a graph termed as the associated graph of the input hypergraph, draw the
graph using force-directed graph layout algorithm to find the coordinates of the
vertices of the input hypergraph and envelop the vertices each hyperedge inside
a closed curve.

It is well-known that the initial position of vertices influences the performance
of the force-based graph layout algorithm. Vertices of the hypergraph can be
initialized randomly (Random initialization), in a circular fashion or uniformly
over the drawing canvas. In Circular initialization, for each vertex xi, its position
xi.pos is initialized to the coordinate of a randomly generated point on a circle of
radius k|Ej | where k ∈ N and xi ∈ Ej . In Grid based initialization, the drawing
canvas is divided into grids, the vertices are associated with grids sequentially
and xi.pos is initialized to a random point inside the grid xi is placed in.

From Hypergraph to Graph. We propose four different ways of construct-
ing associated graphs of a hypergraph- namely, complete associated graph, star
associated graph, cycle associated graph and wheel associated graph. Each of
these constructions gives rise to an algorithm.

Consider a hypergraph H denoted by the tuple (X,E = {E1, E2, . . . , En}).
For practical purposes, also consider xi.pos denotes the position vector of an
arbitrary vertex xi ∈ X on the drawing canvas. Furthermore, {x1, x2, . . . , x|Ei|}
denotes the set of vertices in the arbitrary hyperedge Ei.

A complete associated graph C(H) of the hypergraph H is a graph whose set
of vertices is X and for each hyperedge Ei, any pair of distinct vertices in Ei

are connected by a unique edge in C(H). To illustrate, the complete associated
graph of the hypergraph H1 = ({a, b, c, d}, {{a, b, c, d}, {c, d}, {a}}) consists of
{a, b, c, d} as the set of vertices and {(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)} as the
set of edges. The drawing algorithm which transforms a hypergraph into its

Hypergraph Drawing by Force-Directed Placement 391

complete associated graph is termed as the Complete algorithm. The motivation
behind the Complete algorithm stems explicitly from the underlying principle
of the force-directed graph layout algorithms and implicitly from the Planar
characteristic of good drawing. Intuitively, fewer crossings are expected to occur
among a set of hyperedges if the constituent vertices of a hyperedge are spatially
closer to each other than to the vertices of the other hyperedges.

A cycle associated graph Cy(H) of the hypergraph H is a graph whose set
of vertices is X and for each hyperedge Ei, a cycle is formed by adding edges
(x1, x2), (x2, x3), . . . , (x|Ei|, x1) in Cy(H). The cycle formed is unique if we con-
sider the vertices in Ei sorted clockwise according to their position in the draw-
ing. The drawing algorithm which transforms a hypergraph into its cycle asso-
ciated graph is named the Cycle algorithm. To illustrate, the cycle associated
graph of the hypergraph H1 mentioned before consists of {a, b, c, d} as the set of
vertices and {(a, b), (b, c), (c, d), (a, d)} as the set of edges. Sometimes attractive
forces between the vertices in the complete subgraphs of C(H) are too strong
which in turn results in a cluttered drawing. The desire to have a sparse drawing
with good Coverage and Regularity is the driving force of the Cycle algorithm
since Cy(H) is a subgraph of C(H).

If we allow vertices other than X into our associated graph, transformations
of other kinds emerge. Given the position vectors of the vertices in X and an
arbitrary hyperedge Ei in the hypergraph H, the barycenter of the vertices in
Ei denoted as bi is the unique vertex located at the position

∑k
i=1

xi.pos
k . The

set of barycenters of H denoted as B is {b1, b2, . . . , bn}.
A star associated graph S(H) of a hypergraph H = (X,E) is a graph whose

set of vertices is H ∪ B and for each hyperedge Ei and its barycenter bi, a star
is formed by adding edges (bi, x1), (bi, x2), . . . , (bi, x|Ei|). To illustrate, S(H1) of
the hypergraph H1 mentioned before consists of {a, b, c, d, b1, b2} as the set of
vertices and {(b1, a), (b1, b), (b1, c), (b1, d), (b2, c), (b2, d)} as the set of edges. The
drawing algorithm which transforms a hypergraph into its star associated graph
is named the Star algorithm. The design principle of the star algorithm follows
from the fact that, spatial nearness among the vertices from the same hyperedge
and remoteness among the vertices from distinct hyperedge can be achieved if
all the vertices feel the attractive force towards the barycenter.

A wheel associated graph W (H) of the hypergraph H is a graph whose set of
vertices is H ∪ B and for each hyperedge Ei and its barycenter bi, a wheel
is formed by adding edges (bi, x1), (bi, x2), . . . , (bi, x|Ei|), (x1, x2), (x2, x3), . . . ,
(x|Ei|, x1). To illustrate, W (H1) of the hypergraph H1 mentioned above con-
sists of ({a, b, c, d, b1, b2} as the set of vertices and {(b1, a), (b1, b), (b1, c), (b1, d),
(b2, c), (b2, d), (a, b), (b, c), (c, d), (a, d)}) as the set of edges. The drawing algo-
rithm which transforms a hypergraph into its wheel associated graph is named
the Wheel algorithm. Note that, the set of hyperedges in the wheel associated
graph is the union of the set of hyperedges of the cycle and the star associated
graphs i.e. W (H) = S(H) ∪ Cy(H).

392 N.A. Arafat and St. Bressan

Fig. 2. The vertices of
a hyperedge {a, b, c, d}
after drawing its Com-
plete associated graph.

Fig. 3. Convex hull of
the vertices a, b, c, d
and its bordering ver-
tices a, b, c.

Fig. 4. Pair-wise
outtangents of the
bordering vertices
and points x, y, z
as their intersec-
tions.

Fig. 5. The hyper-
edge drawn as a
closed Catmull-
Rom Spline going
through x, y, z.

Drawing Hypergraph from Associated Graph. The Force-directed graph
drawing algorithm applied to an associated graph results in an embedding of the
vertices of its corresponding hypergraph. Each hyperedge of that hypergraph
is then drawn as a closed curve enveloping its vertices. Figures 2, 3, 4 and 5
illustrate this process in sequence.

5 Experiments, Results, and Analysis

We empirically and comparatively evaluate the effectiveness and scalability of
the algorithms on both synthetic and real dataset. We generate random hyper-
graphs with 2000 vertices and varying number of hyperedges and use them as
our synthetic dataset. We use the DBLP 1 co-authorship network as our real
dataset. Readers may refer to [3] for details about our experimental results.

The Complete and the Wheel algorithms have better Planarity than the rest.
The reason is the attractive forces among the vertices in the Complete and the
Wheel associated graphs are higher than the other associated graphs since a
wheel and complete graph has more edges than the star or the cycle graph over
the same number of vertices. The Cycle and the Star algorithm have better Cov-
erage than the others due to the dominance of repulsive forces among the vertices
in the associated graphs. In terms of Regularity, the performance varies depend-
ing on the granularity parameter in the experiment. We also observe that the
Grid based initialization has the same effect on the performance as the circular
initialization. Random initialization results in better Regularity than the Circu-
lar initialization. In Scalability experiment, the performance of the algorithms on
the metrics are consistent and similar as in the effectiveness experiment. Figure 6
illustrates some drawings generated by one of our algorithms.

1 http://dblp.uni-trier.de/xml/.

http://dblp.uni-trier.de/xml/

Hypergraph Drawing by Force-Directed Placement 393

Fig. 6. Example of some drawings by the Wheel algorithm

6 Conclusion

We propose a family of algorithms for drawing hypergraphs. We also propose a
set of measurable criteria for evaluating the performance of the algorithms. We
empirically evaluate the effectiveness and scalability of our proposed algorithms
with different initial positioning of the vertices. The drawings by our algorithms
are not only aesthetically pleasing in a qualitative way but also follow a set
of quantitative criteria of good drawing. However, the drawings generated have
lesser uniformity than expected stemming from scattering of disconnected com-
ponents by the underlying force-directed graph layout algorithm. In future, we
would like to extend Fruchterman-Reingold’s algorithm from two-dimensional
canvas to higher dimensions by modeling the hyperedges as elastic manifolds
with the hope of having better drawings.

Acknowledgement. This work is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its Campus for Research Excellence and Tech-
nological Enterprise (CREATE) programme.

References

1. Alper, B., Riche, N., Ramos, G., Czerwinski, M.: Design study of linesets, a novel
set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12), 2259–2267
(2011)

2. Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: Visu-
alizing sets and set-typed data: State-of-the-art and future challenges. In: Euro-
graphics conference on Visualization (EuroVis)-State of The Art Reports, pp. 1–21
(2014)

394 N.A. Arafat and St. Bressan

3. Arafat, N.A., Bressan, S.: Hypergraph drawing by force-directed placement. School
of Computing, National University of Singapore, Technical report number TRC6/17
(2017). http://www.comp.nus.edu.sg/naheed/files/hypergraphdrawing.pdf

4. Bertault, F., Eades, P.: Drawing hypergraphs in the subset standard (short demo
paper). In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 164–169. Springer,
Heidelberg (2001). doi:10.1007/3-540-44541-2 15

5. Brinkmeier, M., Werner, J., Recknagel, S.: Communities in graphs and hyper-
graphs. In: Proceedings of the Sixteenth ACM Conference on Conference on Infor-
mation and Knowledge Management, pp. 869–872. ACM (2007)

6. Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with
isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 15(6),
1009–1016 (2009)

7. Dinkla, K., van Kreveld, M.J., Speckmann, B., Westenberg, M.A.: Kelp diagrams:
point set membership visualization. In: Computer Graphics Forum, pp. 875–884.
Wiley Online Library (2012)

8. Eschbach, T., Günther, W., Becker, B.: Orthogonal hypergraph drawing for
improved visibility. J. Graph Algorithms Appl. 10(2), 141–157 (2006)

9. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM (JACM) 30(3), 514–550 (1983)

10. Flower, J., Howse, J.: Generating Euler diagrams. In: Hegarty, M., Meyer, B.,
Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 61–75.
Springer, Heidelberg (2002). doi:10.1007/3-540-46037-3 6

11. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exp. 21(11), 1129–1164 (1991)

12. Lundgren, J.R.: Food webs, competition graphs, competition-common enemy
graphs, and niche graphs. In: Roberts, F. (ed.) Applications of Combinatorics and
Graph Theory to the Biological and Social Sciences. The IMA Volumes in Mathe-
matics and its Applications, vol. 17, pp. 221–243. Springer, New York (1989)

13. Mäkinen, E.: How to draw a hypergraph. Int. J. Comput. Math. 34(3–4), 177–185
(1990)

14. Meulemans, W., Riche, N.H., Speckmann, B., Alper, B., Dwyer, T.: Kelpfusion:
a hybrid set visualization technique. IEEE Trans. Vis. Comput. Graph. 19(11),
1846–1858 (2013)

15. Ramadan, E., Tarafdar, A., Pothen, A.: A hypergraph model for the yeast pro-
tein complex network. In: Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International. p. 189. IEEE (2004)

16. Santamaŕıa, R., Therón, R.: Visualization of intersecting groups based on hyper-
graphs. IEICE Trans. Inf. Syst. 93(7), 1957–1964 (2010)

17. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of over-
lapping sets. In: Computer Graphics Forum, pp. 967–974. Wiley Online Library
(2009)

18. Verroust, A., Viaud, M.-L.: Ensuring the drawability of extended Euler diagrams
for up to 8 sets. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams
2004. LNCS (LNAI), vol. 2980, pp. 128–141. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-25931-2 13

http://www.comp.nus.edu.sg/naheed/files/hypergraphdrawing.pdf
http://dx.doi.org/10.1007/3-540-44541-2_15
http://dx.doi.org/10.1007/3-540-46037-3_6
http://dx.doi.org/10.1007/978-3-540-25931-2_13
http://dx.doi.org/10.1007/978-3-540-25931-2_13

	Hypergraph Drawing by Force-Directed Placement
	1 Introduction
	2 Related Work
	3 Aesthetics
	4 Algorithms
	5 Experiments, Results, and Analysis
	6 Conclusion
	References

