Topological Data Analysis with ϵ -net Induced Lazy Witness Complex

Naheed Anjum Arafat¹, Debabrota Basu², Stéphane Bressan¹

¹National University of Singapore ²Chalmers University of Technology

November 25, 2020

・ロト ・四ト ・ヨト ・ヨト

Approximating persistent topological features from point-clouds via (better) sampling

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Topological features

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Topological features

The underlying space: A Ring in $\mathbb{R}^{\mathbf{2}}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Topological features

1 Connected component (Top. feat. at dim. 0) 1 cycle, Inner-cycle \sim Outer-cycle (Top. feat. at dim. 1) 0 void (Top. feat. at dim. 2)

Formal Representation: Simplicial complex

• Simplicial Complex: A set of simplices (0-simplex: A point, 1-simplex: Edge, 2-simplex: Filled triangle)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Formal Representation: Simplicial complex

- Simplicial Complex: A set of simplices (0-simplex: A point, 1-simplex: Edge, 2-simplex: Filled triangle)
- Choose a threshold α .
 - Draw diameter α -balls around each **point**.
 - Connect two points with an edge if their corresponding balls intersect pairwise.
 - Connect three points with a **filled triangle** if their corresponding balls intersect pairwise. And so on.

Vietoris-Rips complex at α (R_{α}).

<ロト <四ト <注ト <注ト = 三

Persistent Topological Features

 \bullet Issue: Choice of the right value for $\alpha \rightarrow$ Persistence.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Persistent Topological Features

- \bullet Issue: Choice of the right value for $\alpha \rightarrow$ Persistence.
- Construct simplicial complex at different scales i.e. α 's \rightarrow Filtration.
- Track appearance (birth) and merge (death) of topological features across scales of $\alpha \rightarrow$ Persistent homology.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Čech complex captures the actual topology of the underlying space of the point-cloud, but not feasible to compute → at most (1 + n)^k simplices of dimension up to k.
- Vietoris-Rips Complex is a 2-approximation of the Čech complex → at most (1 + n)^k simplices of dimension up to k.

Computational bottleneck: Enumerating large number of simplices.

< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

- Čech complex captures the actual topology of the underlying space of the point-cloud, but not feasible to compute → at most (1 + n)^k simplices of dimension up to k.
- Vietoris-Rips Complex is a 2-approximation of the Čech complex → at most (1 + n)^k simplices of dimension up to k.

Computational bottleneck: Enumerating large number of simplices.

The Central Computational Question of TDA

Can we have approximate simplicial representations which are computable in reasonable time, yet good approximations to Vietoris-Rips or Čech complex?

A Computationally Faster Approximation: Lazy Witness Complex and The Question to Solve

Lazy witness Complex $LW_{\alpha}(P, L, \nu)$

Lazy witness Complex $LW_{\alpha}(P, L, \nu)$ of a point-cloud P is a simplicial complex over a landmark set L that consists of k-simplices $[v_0v_1\cdots v_k]$ whose any two points v_i, v_j are in $\alpha + d_{\nu}$ proximity of some witness point w (d_{ν} is the distance from w to its ν -th nearest neighbour in L.)

- Lazy witness complex is Vietoris-Rips complex on landmarks L for $\nu = 0$.
- The size of the lazy witness complex is at most $(1 + |L|)^k$ where $|L| \ll n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

A Computationally Faster Approximation: Lazy Witness Complex and The Question to Solve

Lazy witness Complex $LW_{\alpha}(P, L, \nu)$

Lazy witness Complex $LW_{\alpha}(P, L, \nu)$ of a point-cloud P is a simplicial complex over a landmark set L that consists of k-simplices $[v_0v_1\cdots v_k]$ whose any two points v_i, v_j are in $\alpha + d_{\nu}$ proximity of some witness point w (d_{ν} is the distance from w to its ν -th nearest neighbour in L.)

- Lazy witness complex is Vietoris-Rips complex on landmarks L for $\nu = 0$.
- The size of the lazy witness complex is at most $(1 + |L|)^k$ where |L| << n.

New Questions

How to select the landmarks?

How good are the landmarks selected by an algorithm?

Can we obtain any approximation guarantee for the lazy witness complex?

The Central Concept

We respond to all these questions by reincarnating the idea of ϵ -net in TDA.

- $\mathsf{Q}.$ Can we obtain any approximation guarantee for the lazy witness complex?
- -> Lazy witness complex induced by an ϵ -net is a 3-approximation to the Vietoris-Rips complex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- Q. How good are the landmarks selected by an algorithm?
- -> ϵ -net is an ϵ -approximation of the point cloud.
- Q. How to select the landmarks?
- -> We propose three algorithms to construct $\epsilon\text{-net.}$

Additionally, we validate these theoretical claims experimentally.

The Central Concept: ϵ -Net

 ϵ -sample (Each blue point is within ϵ of some red point)

 ϵ -net

<ロト <四ト <注ト <注ト = 三

 $\epsilon\text{-sparse}$ (Each pair of red points are $\epsilon\text{-far}$ from each other

Definition (ϵ -sample)

A set $L \subseteq P$ is an ϵ -sample of P if the collection $\{B_{\epsilon}(x) : x \in L\}$ of ϵ -balls of radius ϵ -covers P, i.e. $P = \bigcup_{x \in L} B_{\epsilon}(x)$.

The Central Concept: ϵ -Net

 ϵ -sample (Each blue point is within ϵ of some red point)

 ϵ -net

Definition (ϵ -sparse)

A set $L \subset P$ is ϵ -sparse if for all $x, y \in L$, $d(x, y) > \epsilon$.

The Central Concept: ϵ -Net

 ϵ -sample (Each blue point is within ϵ of some red point)

 $\epsilon\text{-sparse}$ (Each pair of red points are $\epsilon\text{-far}$ from each other

 $\epsilon\text{-net}$

《曰》 《問》 《臣》 《臣》 三臣

$\epsilon\text{-net}$

A subset (L) of points which is ϵ -sparse and ϵ -sample of the point-cloud (P).

Approximation Guarantee: ϵ -Net Induced Lazy Witness Complex

Approximating the Vietoris-Rips Complex

If the landmark set L is an ϵ -net of the point cloud P, the lazy witness complex at α and $\nu = 1$ is 3-approximation of the Vietoris-Rips complex of L for $\alpha \ge 2\epsilon$. Mathematically,

 $R_{\alpha/3}(L) \subseteq LW_{\alpha}(P,L,1) \subseteq R_{3\alpha}(L) \qquad \forall \alpha \geq 2\epsilon.$

<ロト <回ト < 注ト < 注ト = 注

Approximation Guarantee: ϵ -Net Induced Lazy Witness Complex

Approximating the Vietoris-Rips Complex

If the landmark set L is an ϵ -net of the point cloud P, the lazy witness complex at α and $\nu = 1$ is 3-approximation of the Vietoris-Rips complex of L for $\alpha \ge 2\epsilon$. Mathematically,

$$R_{\alpha/3}(L) \subseteq LW_{\alpha}(P,L,1) \subseteq R_{3\alpha}(L) \qquad \forall \alpha \geq 2\epsilon.$$

Approximating the Persistent topological feature

If we compare the bars (in the barcode) appearing after 2ϵ , barcodes (log-scale) of the lazy witness filtration and the Vietoris-Rips filtration are $3 \log 3$ -approximations of each other. (By weak-stability theorem^a)

^aChazal et al., "Proximity of persistence modules and their diagrams".

Experimental Validation of Approximation Guarantee

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quality of Landmarks: Properties of ϵ -Net

Point-cloud Approximation Guarantee

The Hausdorff distance between the point cloud and its ϵ -net is at most ϵ .

<ロト <回ト < 注ト < 注ト = 注

Quality of Landmarks: Properties of ϵ -Net

Point-cloud Approximation Guarantee

The Hausdorff distance between the point cloud and its ϵ -net is at most ϵ .

Size of an $\epsilon\text{-Net}$

The number of points in an ϵ -net is at most $(\frac{\Delta}{\epsilon})^{\theta(D)}$ for $P \in \mathbb{R}^D$ of diameter Δ .

Algorithm: ϵ -net-rand

First landmark: Select uniformly at random from the point-cloud. Mark points in its ϵ -ball.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶

- E

Algorithm: ϵ -net-rand

Next landmark: Select u.a.r from the set of unmarked points. Mark points in its ϵ -ball. And so on.

・ロト ・御ト ・モト ・モト

- 2

Algorithm: ϵ -net-maxmin

First landmark: Select u.a.r. from the point-cloud. Mark points in its ϵ -ball.

Algorithm: ϵ -net-maxmin

Next landmark: Select the point that is farthest from the current set of landmarks. And so on.

Algorithm: $(\epsilon, 2\epsilon)$ -net

First landmark: Select u.a.r from the point-cloud. Mark points in its ϵ -ball.

・ロト ・御ト ・ヨト ・ヨト 三日

Algorithm: $(\epsilon, 2\epsilon)$ -net

Second landmark: Select u.a.r from the unmarked points in the $(\epsilon, 2\epsilon)$ envelope of the current set of landmarks. And so on.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Experimental Evaluation: Effectiveness-Efficiency

Effectiveness and Efficiency of the algorithms on Torus dataset.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�?

- If the landmarks is an ϵ -net, we know about the quality of the-
 - landmarks
 - lazy witness approximation
 - approximated persistent topological features.
- Use ϵ -net as landmarks.
- You have a point-cloud dataset? -> Apply Topological Data Analysis!

《曰》 《聞》 《臣》 《臣》 三臣 …

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Supplementary Slides

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Experiments: Datasets

Figure 1: (left) Torus, (middle) Tangled-torus, and (right) 1grm Dataset

・ロト ・日下・ ・日下・

æ

Relation to Maxmin and Random Landmark Selection Algorithms

- Given the number of landmarks K > 1, the set of landmarks selected by the algorithm random/maxmin is δ -sparse where δ is the minimum of the pairwise distances among the landmarks.
- The choice of K may not necessarily make the landmarks a δ -sample of the point cloud.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- ϵ -net-rand: $O(\frac{1}{\epsilon^D})$
- ϵ -net-maxmin: $O(\frac{n}{\epsilon^D})$
- $(\epsilon, 2\epsilon)$ -net: $O(\frac{1}{\epsilon^D}) \log(\frac{1}{\epsilon})$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Experimental Evaluation: Stability

Figure 2: 95% confidence band of the rank one persistence landscape at dimension 1 of the lazy witness filtration induced by the landmark selection algorithms on Tangled-torus dataset.

The topological approximation guarantee is

• with respect to the Vietoris-Rips complex on ϵ -net landmarks chosen from a point-cloud input.

Next up -

- Better guarantee w.r.t Vietoris-Rips complex on point-cloud:-
 - Improved the approximation guarantee from 3-approximation of $R_{\alpha}(L)$ to $\frac{3\log(c)}{2}$ -approximation of $R_{\alpha}(P)$ for $c \geq 2$.
- Graph data ¹:-
 - Defined ϵ -net for graphs.
 - Devised algorithms for computing ϵ -net of graphs.
 - Potential applications: Graph clustering, Graph visualization, Graph classification.
- Comparison with Sparse-Rips and Graph Induced filtration (A weakness!).

¹To appear at ECML-PKDD'19 workshop on Applied Topological Data Analysis