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What is this Talk About?

Approximating persistent topological features
from point-clouds

via (better) sampling



Topological features

A point-cloud



Topological features

The underlying space: A Ring in R2



Topological features

1 Connected component (Top. feat. at dim. 0)
1 cycle, Inner-cycle ∼ Outer-cycle (Top. feat. at dim. 1)
0 void (Top. feat. at dim. 2)



Formal Representation: Simplicial complex

Simplicial Complex: A set of simplices (0-simplex: A point, 1-simplex: Edge,
2-simplex: Filled triangle)

Choose a threshold α.
Draw diameter α-balls around each point.
Connect two points with an edge if their corresponding balls intersect pairwise.
Connect three points with a filled triangle if their corresponding balls intersect
pairwise. And so on.

Vietoris-Rips complex at α (Rα).
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Persistent Topological Features
Issue: Choice of the right value for α → Persistence.

Construct simplicial complex at different scales i.e. α’s → Filtration.
Track appearance (birth) and merge (death) of topological features across
scales of α → Persistent homology.
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Approximate Simplicial Representations

Čech complex captures the actual topology of the underlying space of the
point-cloud, but not feasible to compute → at most (1 + n)k simplices of
dimension up to k .

Vietoris-Rips Complex is a 2-approximation of the Čech complex → at
most (1 + n)k simplices of dimension up to k .

Computational bottleneck: Enumerating large number of simplices.

The Central Computational Question of TDA
Can we have approximate simplicial representations which are
computable in reasonable time, yet good approximations to
Vietoris-Rips or Čech complex?
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A Computationally Faster Approximation: Lazy Witness
Complex and The Question to Solve

Lazy witness Complex LWα(P , L, ν)

Lazy witness Complex LWα(P, L, ν) of a point-cloud P is a simplicial complex
over a landmark set L that consists of k-simplices [v0v1 · · · vk ] whose any two
points vi , vj are in α + dν proximity of some witness point w (dν is the distance
from w to its ν-th nearest neighbour in L.)

Lazy witness complex is Vietoris-Rips complex on landmarks L for ν = 0.
The size of the lazy witness complex is at most (1 + |L|)k where |L| << n.

New Questions
How to select the landmarks?
How good are the landmarks selected by an algorithm?
Can we obtain any approximation guarantee for the lazy witness complex?
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Our Contributions

The Central Concept
We respond to all these questions by reincarnating the idea of ε-net in TDA.

Q. Can we obtain any approximation guarantee for the lazy witness complex?
-> Lazy witness complex induced by an ε-net is a 3-approximation to the

Vietoris-Rips complex.
Q. How good are the landmarks selected by an algorithm?
-> ε-net is an ε-approximation of the point cloud.
Q. How to select the landmarks?
-> We propose three algorithms to construct ε-net.

Additionally, we validate these theoretical claims experimentally.



The Central Concept: ε-Net

ε-sample (Each blue point is
within ε of some red point)

ε-sparse (Each pair of red points
are ε-far from each other

ε-net

Definition (ε-sample)
A set L ⊆ P is an ε-sample of P if the collection {Bε(x) : x ∈ L} of ε-balls of
radius ε-covers P , i.e. P = ∪x∈LBε(x).

Definition (ε-sparse)
A set L ⊂ P is ε-sparse if for all x , y ∈ L, d(x , y) > ε.
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The Central Concept: ε-Net

ε-sample (Each blue point is
within ε of some red point)

ε-sparse (Each pair of red points
are ε-far from each other

ε-net

ε-net
A subset (L) of points which is ε-sparse and ε-sample of the point-cloud (P).



Approximation Guarantee: ε-Net Induced Lazy Witness
Complex

Approximating the Vietoris-Rips Complex
If the landmark set L is an ε-net of the point cloud P, the lazy witness complex at
α and ν = 1 is 3-approximation of the Vietoris-Rips complex of L for α ≥ 2ε.
Mathematically,

Rα/3(L) ⊆ LWα(P, L, 1) ⊆ R3α(L) ∀α ≥ 2ε.

Approximating the Persistent topological feature
If we compare the bars (in the barcode) appearing after 2ε, barcodes (log-scale) of
the lazy witness filtration and the Vietoris-Rips filtration are
3 log 3-approximations of each other. (By weak-stability theorema)

aFrédéric Chazal et al. “Proximity of persistence modules and their
diagrams”. In: Proceedings of the twenty-fifth annual symposium on
Computational geometry. ACM. 2009, pp. 237–246.
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Experimental Validation of Approximation Guarantee
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Validation of the bound on Point-cloud sampled from Torus.



Quality of Landmarks: Properties of ε-Net

Point-cloud Approximation Guarantee
The Hausdorff distance between the point cloud and its ε-net is at most ε.

Size of an ε-Net
The number of points in an ε-net is at most ( ∆

ε )θ(D) for P ∈ RD of diameter ∆.
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Algorithm: ε-net-rand

ϵ

First landmark: Select uniformly at random from the point-cloud. Mark points in its ε-ball.



Algorithm: ε-net-rand

ϵ
ϵ

Next landmark: Select u.a.r from the set of unmarked points. Mark points in its ε-ball. And so on.



Algorithm: ε-net-maxmin

ϵ

First landmark: Select u.a.r. from the point-cloud. Mark points in its ε-ball.



Algorithm: ε-net-maxmin

ϵ

ϵ

Next landmark: Select the point that is farthest from the current set of landmarks. And so on.



Algorithm: (ε, 2ε)-net

ϵ

2ϵ

First landmark: Select u.a.r from the point-cloud. Mark points in its ε-ball.



Algorithm: (ε, 2ε)-net

ϵ

ϵ

2ϵ

2ϵ

Second landmark: Select u.a.r from the unmarked points in the (ε, 2ε) envelope of the current set of
landmarks. And so on.



Experimental Evaluation: Effectiveness-Efficiency
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Effectiveness and Efficiency of the algorithms on Torus dataset.



Take Away

If the landmarks is an ε-net, we know about the quality of the-
landmarks
lazy witness approximation
approximated persistent topological features.

Use ε-net as landmarks.
You have a point-cloud dataset? -> Apply Topological Data Analysis!



Thank You!



Supplementary Slides



Experiments: Datasets

Figure 1: (left) Torus, (middle) Tangled-torus, and (right) 1grm Dataset



Relation to Maxmin and Random Landmark Selection
Algorithms

Given the number of landmarks K > 1, the set of landmarks selected by the
algorithm random/maxmin is δ-sparse where δ is the minimum of the
pairwise distances among the landmarks.
The choice of K may not necessarily make the landmarks a δ-sample of the
point cloud.



Algorithm complexity

ε-net-rand: O( 1
εD

)

ε-net-maxmin: O( n
εD

)

(ε, 2ε)-net: O( 1
εD

) log ( 1ε )



Experimental Evaluation: Stability
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Figure 2: 95% confidence band of the rank one persistence landscape at dimension 1 of the lazy witness
filtration induced by the landmark selection algorithms on Tangled-torus dataset.



Whats Next?

The topological approximation guarantee is
with respect to the Vietoris-Rips complex on ε-net landmarks chosen from a
point-cloud input.

Next up -
Better guarantee w.r.t Vietoris-Rips complex on point-cloud:-

Improved the approximation guarantee from 3-approximation of Rα(L) to
3log(c)

2 -approximation of Rα(P) for c ≥ 2.

Graph data 1:-
Defined ε-net for graphs.
Devised algorithms for computing ε-net of graphs.
Potential applications: Graph clustering, Graph visualization, Graph
classification.

Comparison with Sparse-Rips and Graph Induced filtration (A weakness!).

1To appear at ECML-PKDD’19 workshop on Applied Topological Data Analysis


