
Construction and Random Generation
of Hypergraphs with Prescribed Degree

and Dimension Sequences

Naheed Anjum Arafat1(B), Debabrota Basu2, Laurent Decreusefond3,
and Stéphane Bressan1

1 School of Computing, National University of Singapore, Singapore, Singapore
naheed anjum@u.nus.edu

2 Data Science and AI Division, Chalmers University of Technology,
Gothenburg, Sweden

3 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

Abstract. We propose algorithms for construction and random genera-
tion of hypergraphs without loops and with prescribed degree and dimen-
sion sequences. The objective is to provide a starting point for as well as
an alternative to Markov chain Monte Carlo approaches. Our algorithms
leverage the transposition of properties and algorithms devised for matri-
ces constituted of zeros and ones with prescribed row- and column-sums
to hypergraphs. The construction algorithm extends the applicability of
Markov chain Monte Carlo approaches when the initial hypergraph is
not provided. The random generation algorithm allows the development
of a self-normalised importance sampling estimator for hypergraph prop-
erties such as the average clustering coefficient.

We prove the correctness of the proposed algorithms. We also prove
that the random generation algorithm generates any hypergraph fol-
lowing the prescribed degree and dimension sequences with a non-zero
probability. We empirically and comparatively evaluate the effectiveness
and efficiency of the random generation algorithm. Experiments show
that the random generation algorithm provides stable and accurate esti-
mates of average clustering coefficient, and also demonstrates a better
effective sample size in comparison with the Markov chain Monte Carlo
approaches.

1 Introduction

While graphs are the prevalent mathematical models for modern applications,
being natural representations of varied objects such as transportation, commu-
nication, social and biological networks [19], to mention a few, they only capture
binary relationships. Hypergraphs introduce the opportunity to represent n-ary
relationships and thus create a more general, albeit more complex and generally
more computationally expensive, alternative [4,15,22].

Indeed many real-world systems are more naturally modelled as hypergraphs,
as exemplified by the cases of multi-body systems, co-authorship networks and
c© Springer Nature Switzerland AG 2020
S. Hartmann et al. (Eds.): DEXA 2020, LNCS 12392, pp. 130–145, 2020.
https://doi.org/10.1007/978-3-030-59051-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59051-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-59051-2_9

Construction and Random Generation of Hypergraphs 131

parliamentary relations [3,21,22]. While the applications are numerous, the prop-
erties of the underlying hypergraphs are yet to be fully understood. Just as it
is the case for graphs in network science [5,12,18], configuration modelling or
the random generation of hypergraphs with prescribed degree and dimension
sequences precisely allows the fabrication of suitable hypergraphs for empirical
and simulation-based studies of hypergraph properties [8].

We study and propose algorithms for construction and random generation
of hypergraphs with prescribed degree and dimension sequences (Sect. 4, 5).
In addition, we present the necessary background on hypergraphs and (0, 1)-
matrices in Sect. 2 and synthesise related works in Sect. 3.

Recently, Chodrow [8] proposed a Markov chain Monte Carlo (MCMC) algo-
rithm to address this problem of generating a labelled hypergraph with a pre-
scribed degree and dimension sequences. The limitation of the MCMC algorithm
is that it requires an initial hypergraph with the prescribed degree and dimen-
sion sequences as a starting point. It is not always the case that such an initial
hypergraph is available. Therefore, we present in Sect. 4 a deterministic algo-
rithm for constructing an initial hypergraph as a starting point for the existing
MCMC approach. At each iteration, our algorithm constructs the edge with the
largest dimension using distinct vertices having the largest degrees.

We present in Sect. 5 a random generation algorithm for generating hyper-
graphs as an alternative to the existing MCMC approach. Our generation algo-
rithm leverage properties and methods devised for (0, 1)-matrices [20] with row-
and column-sums coinciding with the hypergraph specification. If no row or col-
umn in the matrix contains only zeros, every (0, 1)-matrix corresponds to the
incidence matrix of a hypergraph with parallel-edges but no loop [4, Chap. 17].
The column-sums of an incidence matrix represent degrees of the vertices and the
row-sums represent dimensions of the edges of a hypergraph. At each iteration,
the random generation algorithm generates the edge with the largest dimen-
sion using distinct, randomly selected vertices that satisfy the characterisation
theorem for (0, 1) matrices (Theorem 1).

We further leverage our random generation algorithm to propose a self-
normalised importance sampling (SNIS) estimator [16] for estimating hyper-
graph properties in Sect. 6.

We prove the correctness of both the algorithms (Theorems 2 and 3). Further-
more, we prove that the generation algorithm generates any random hypergraph
having prescribed degree and dimension sequences with non-zero probability
(Theorem 4). We evaluate the effectiveness (Sect. 7) of the MCMC algorithm
enabled with our construction algorithm and the random generation algorithm
with SNIS estimator by estimating the average clustering coefficient of the pro-
jected graphs of the family of hypergraphs having prescribed degree and dimen-
sion sequence and also computing corresponding effective samples size [16].

We conclude in Sect. 8 by summarising our findings.

132 N. A. Arafat et al.

2 Hypergraphs and (0, 1)-matrices

In this section, we describe selected concepts of hypergraphs and inequalities
involving (0, 1)-matrices relevant for the transposition of properties and algo-
rithms for (0, 1)-matrices to hypergraphs.

Definition 1 (Hypergraph [4]). A hypergraph H = (V,E) is a tuple of a
vertex set V = {v1, . . . , vn} and an edge set E = {e1, . . . , em} where each edge
is a subsets of V . Here V is a set and E is a multiset.

Unless otherwise stated, hypergraphs are labelled, may contain parallel-edges
but no self-loop. The polyadic relations i.e. the edges connecting the vertices in
a hypergraph is presentable as a (0, 1)-matrix, called the incidence matrix.

Definition 2 (Incidence Matrix). The incidence matrix M = [mij]
m,n
i,j=1,1 of

a labelled hypergraph H = (V,E) is a (0, 1)-matrix with columns representing
labels of vertices in V and rows representing edge set E where

mi,j =

{
1 if vj ∈ ei,

0 otherwise.

The incidence matrix of a hypergraph is not unique. Even if the vertices are
arranged in a total-order, such as in descending order of degrees and lexico-
graphic order of labels among the vertices with same degree, any permutation
of the rows would provide another incidence matrix of the same hypergraph.

Property 1. Every incidence matrix of a hypergraph whose degree sequence is
(a)n and dimension sequence is (b)m is contained in the set of (0, 1)-matrices
of dimension m × n whose column-sums are (a)n and row-sums are (b)m. Thus,
any algorithm that uses the characterisation of sequences (a)n and (b)m to con-
struct an m × n-dimensional (0, 1)-matrix with column-sum (a)n and row-sums
(b)m can be leveraged to construct a hypergraph with degree-sequence (a)n and
dimension sequence (b)m. This observation constitute the core of our random
hypergraph generation proposed in Sect. 5.

Property 2. In order to design the proposed algorithms and to prove their cor-
rectness, we use the Gale-Rysers characterisation of (0, 1)-matrices (Theorem 1).
Before discussing the theorem, we intend to remind us the notion of dominance
between sequences.

Definition 3 (Dominance [17]). (a)n is defined to be dominated by (b)m if
the corresponding zero-padded sequences (a∗)l and (b∗)l, where l = max{m,n}
satisfy -
(i) sum of the first k components of (a∗)l is smaller than or equal to sum of the
first k components of (b∗)l and

Construction and Random Generation of Hypergraphs 133

(ii) sum of all the components of (a∗)l is equal to the sum of all the components
of (b∗)l. Mathematically,

(a)n ≺ (b)m ⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k∑
i=1

a∗
i ≤

k∑
i=1

b∗
i , k = 1, 2, . . . , l − 1

l∑
i=1

a∗
i =

l∑
i=1

b∗
i .

a∗
i = ai for i ≤ n, a∗

i = 0 for i > n, b∗
i = bi for i ≤ m and b∗

i = 0 for i > m.

Theorem 1 (Gale-Rysers [14,20] Characterisation of Matrices). If
(a)n = (a1, a2, . . . , an) and (b)m = (b1, b2, . . . , bm) are two monotonically non-
increasing, non-negative integer sequences, the necessary and sufficient condition
for the existence of a (0, 1)-matrix with column sums (a)n and row sums (b)m is
that (a)n is dominated by the conjugate sequence of (b)m.

The conjugate sequence of (b)m is a sequence whose ith component is the num-
ber of components in (b)m that are greater than or equal to i. We denote the
conjugate sequence of (b)m as b̄n.1 A sequence-pair ((a)n, (b)m) satisfying the
dominance condition in Gale-Rysers characterisation is said to be realisable by
a (0, 1)-matrix. Conversely, such a matrix is said to realise (a)n, (b)m.

Property 3. Another observation is that if we construct a new sequence
(a′)n−1 = (a2, a3, . . . , an) from a monontonically non-increasing positive inte-
ger sequence (a)n = (a1, a2, a3, . . . , an), the conjugate sequence of (a)n−1 can be
derived from the conjugate sequence of (a)n by reducing the first a1 components
of ā by 1.

Lemma 1 ([17]). Let (a)n = (a1, a2, . . . , an) be a positive monotonically non-
increasing. If we construct a new sequence (a′)n−1 � (a2, . . . , an), then the con-
jugate sequence of (a′)n−1 is

(ā′) = (ā1 − 1, . . . , āa1 − 1, āa1+1, . . . , ān).

Example 1. Let (a) = (4, 2, 2, 1). Its conjugate sequence is (ā) = (4, 3, 1, 1, 0, . . .).
By removing a1, we get a new sequence (a′) = (2, 2, 1). The conjugate sequence of
(a′) is (3, 2, 0, 0, . . .) which is exactly the sequence derived from (4, 3, 1, 1, 0, . . .)
by reducing first four components by 1 i.e. (4 − 1, 3 − 1, 1 − 1, 1 − 1, 0, . . .).

Fulkerson and Ryser [13] state a necessary condition that preserves dominace
after reducing the values of a fixed number of components by 1 in sequences
(a)n and (b)n related by dominance.

1 Since the number of 1’s in a row of an m×n-dimensional (0, 1) matrix cannot exceed
n, the length of the conjugate sequence of row sums (b)m is upper bounded by n.

134 N. A. Arafat et al.

Lemma 2 (Fulkerson-Ryser’s Lemma [13]). Let (a)n and (b)n be two
monotonically non-increasing integer sequences. Let (u)n be sequence obtained
from (a)n by reducing components at indices i1, i2, . . . , iK by 1. Similarly, let
(v)n be obtained from (b) by reducing components at indices j1, j2, . . . , jK by 1.

If i1 ≤ j1, i2 ≤ j2, . . . , iK ≤ jK , and (a)n ≺ (b)n, we get (u)n ≺ (v)n.

We leverage this lemma to prove correctness of our construction algorithm
(Sect. 5).

3 Related Works

3.1 Graphs with a Prescribed Degree Sequence

There are two main frameworks for the generation of random graphs with a
prescribed degree sequence. The first framework is direct sampling [12], that
constructs the graph incrementally edge-by-edge. Among algorithms based on
direct sampling, [6] and [2] introduced the concept of stubs and the procedure of
stub-matching as an algorithm for counting the number of labelled graphs with a
prescribed degree sequence. The stub-matching procedure may generate graphs
with loops and parallel-edges, which is often undesirable. Rejecting the gener-
ated random graph until a simple graph is generated is proposed as a remedy.
However, this approach is inefficient for large degree values as an exponential
number of samples might get rejected [5,12]. Furthermore, there is no obvious
way to extend this algorithm for graphs into an algorithm for hypergraphs [8].

As an alternative to the stub-matching algorithm, [5] proposed an algorithm
that uses the Erdös-Gallai’s characterisation to generate simple graphs. This
algorithm generates all simple graphs following a given degree sequence with a
non-zero probability. [5] also proposes an importance sampling scheme to esti-
mate the number of simple graphs following the prescribed degree sequence.
Motivated by their work on simple graphs, in this paper, we devise a self-
normalised importance sampling scheme (Sect. 6) using our random generation
algorithm (Sect. 5) to estimate average clustering coefficient of projected graphs
of hypergraphs having a prescribed degree and dimension sequences (Sect. 7).

The second framework proposes MCMC algorithms [12,18,19] that itera-
tively switch edges of an initial graph with a given degree sequence to obtain the
final graph. MCMC algorithms try and show that the intermediate hypergraphs
form a Markov chain whose stationary distribution converges to the uniform dis-
tribution over the set of all graphs with the given degree sequence [12]. However,
it is challenging to prove mixing-time bounds for algorithms in this family, and
mixing results are known only for regular graphs [5].

3.2 Hypergraphs with Prescribed Degree and Dimension Sequences

Chodrow [8] proposed a hypergraph configuration modelling approach to the
uniform distribution of labelled hypergraphs with prescribed degree and dimen-
sion sequence. The hypergraphs under investigation have parallel-edges but no

Construction and Random Generation of Hypergraphs 135

Algorithm 1. Constructing initial hypergraphs
Input: Degree and dimension sequences, (a)n and (b)m, sorted in descending order
Output: Hypergraph H = (V, E)
1: Initialise: V ← {1, . . . , n}, E ← φ, (a)1 ← (a)n, (b)1 ← (b)m
2: for j = 1, 2, · · · , m do
3: Construct edge ej = {v1, · · · , v

b
j
1
}

4: Construct (a)j+1
n by reducing the first bj1 components of (a)jn by 1.

5: Construct (b)j+1 = (bj2, b
j
3, . . . , b

j
m)

6: E ← E ∪ {ej}
7: Sort sequence (a)j+1 in descending order.
8: end for

self-loop. He proposed an MCMC algorithm that, as it is done in similar algo-
rithms for graphs, sequentially switches edges of a labelled initial hypergraph
satisfying the prescribed degree and dimension sequences. As the lag at which
to sample a hypergraph from the Markov chain tends to infinity, he showed that
the algorithm outputs uniformly at random a hypergraph from the set of all
hypergraphs having the prescribed degree and dimension sequences.

However, in practice, the initial hypergraph is not always available. Addi-
tionally, due to lack of mixing time results about the chain, there is no prin-
cipled guideline for choosing lag. These observations motivated us to develop
both a deterministic algorithm to construct an initial hypergraph facilitating
the MCMC algorithm, as well as a random generation algorithm that does not
need an initial hypergraph as an alternative to the MCMC algorithm.

4 Construction of an Initial Hypergraph

We leverage the properties elaborated in Sect. 2 to construct a hypergraph
with prescribed degree and dimension sequences. The construction algorithm
addresses the limitation of the MCMC algorithm [8] by providing a starting
point for it. Our algorithm uses the methodology proposed by Ryser [20] for
(0, 1)-matrices and by Gale [14] for flows in bipartite-graphs. We illustrate the
pseudocode in Algorithm 1. At each iteration, Algorithm 1 constructs the edge
with the largest dimension using distinct vertices having the largest degrees.

In Algorithm 1, the aim is to construct a hypergraph with n vertices, m
edges, degree sequence (a)n, and dimension sequence (b)m. Algorithm 1 takes
non-increasingly sorted sequences (a)n and (b)m as input. It initialises (a)1 as
(a)n and (b)1 as (b)m. At each iteration j ∈ {1, . . . , m}, it constructs an edge by
selecting bj

1 distinct vertices with maximal non-zero degrees2. Then it constructs
(a)j+1 by reducing the degrees of the selected vertices in (a)j by 1 and refers to
(bj

2, . . . , b
j
m) as (b)j+1. It proceeds to construct the next edge using (a)j+1 and

(b)j+1, and continues until all m edges are constructed.

2 Here the ties are broken using the lexicographic order of the vertex-labels.

136 N. A. Arafat et al.

We prove that the construction of edge ej at every iteration j is feasible,
meaning, the residual sequences (a)j+1 and (b)j+1 are realisable by a hypergraph.

Theorem 2. If the sequences (a)j and (b)j are realisable by a hypergraph with
m edges and n vertices, the sequences (a)j+1 and (b)j+1, constructed at iteration
j, are realisable by a hypergraph with (m − 1) edges and n vertices.

Proof Sketch. We prove the theorem by induction on m. If m = 0, the algorithm
terminates with a hypergraph with empty edges (E = φ), which is the only
hypergraph with 0 edges and n vertices.

Suppose m > 0. By induction hypothesis, (a)j , (b)j are realisable by a hyper-
graph H with m edges. Taking an incidence matrix M of H and applying Theo-
rem 1, we get (a)j ≺ (b̄)j . By construction, (a)j+1 is the same as (a)j except the
first bj

1 components are reduced by 1. By construction of (b)j+1 and Lemma 1, the
conjugate (b̄)j+1 is the same as (b̄)j except the first bj

1 components reduced by
1. Thus Lemma 2 implies that (a)j+1 ≺ (b̄)j+1. By Theorem 1, an (m − 1) × n-
dimensional incidence matrix M ′ of some hypergraph H ′ exists that realises
sequences (a)j+1, (b)j+1.

5 Random Generation of Hypergraphs

In this section, we propose a random generation algorithm (Algorithm 2) using
the characterisation (Theorem 1) for (0, 1)-matrices. In Algorithm 2, we itera-
tively construct edges in descending order of cardinality and stochastically assign
the vertices to the edges such that Theorem 1 is satisfied. Algorithm 2 leverages
design methods proposed for (0, 1)-matrices in [7].

Three observations are central to the development of Algorithm2.

Observation 1. If there are two sequences (b)j = (bj
1, b

j
2, . . . , b

j
m) and (b)j+1 =

(bj
2, . . . , b

j
m), Lemma 1 implies that we can construct the conjugate sequence of

(b)j+1, namely (b̄)j+1, from the conjugate sequence of (b)j, namely (b̄)j, by reduc-
ing first bj

1 components of (b̄)j by 1.

Observation 2. If we randomly select K non-zero components from (a)j whose
indices are i1, . . . , iK and reduce them by 1, we obtain a residual sequence (a)j+1.
If we select those K components in such a way that after reduction the dominance
(a)j+1 ≺ (b̄)j+1 holds, we can construct an (m − 1) × n-dimensional (0, 1)-
matrix with residual column-sums (a)j+1 and row-sums (b)j+1. This is direct
consequence of Gale-Rysers theorem (Theorem1). The constructed (0, 1)-matrix
is an incidence matrix of a hypergraph with m − 1 edges and n vertices having
degree sequence (a)j+1 and dimension sequence (b)j+1.

Observation 3. Since our interest is to reduce K non-zero components of (a)j

by 1 while preserving the dominance (a)j+1 ≺ (b̄)j+1, we search for the indices

Construction and Random Generation of Hypergraphs 137

Algorithm 2. Generating random hypergraphs
Input: Degree and dimension sequences, (a)n and (b)m, sorted in descending order
Output: Hypergraph H = (V, E)
1: Initialise: V ← {1, . . . , n}, E ← φ, (a)1 ← (a)n, (b)1 ← (b)m.
2: (b̄)1 ← conjugate sequence of (b)1

3: for j = 1, 2, · · · , m do
4: Construct (b̄)j+1 from (b̄)j by reducing first bj1 components in (b̄)j by 1.
5: Compute critical indices {kj

1, k
j
2, . . .} where (a)j ⊀ (b̄)j+1 (Equation (1)).

6: Compute corresponding margins of violation {nj
1, n

j
2, . . .} (Equation (2)).

7: ej ← φ, kj
0 ← 0

8: while kj
i ∈ {kj

1, k
j
2, . . .} do

9: oi → An integer sampled from [nj
i − |ej |, min(bj1 − |ej |, kj

i − kj
i−1)] uniformly

at random.
10: Oi → oi indices selected from Ij

i = [kj
i−1 + 1, kj

i] uniformly at random.
11: ej ← ej ∪ Oi

12: Reduce components in (a)j at positions O by 1.
13: end while
14: E ← E ∪ {ej}.
15: (a)j+1 ← (a)j sorted in descending order.
16: Construct (b)j+1 = (bj2, b

j
3, . . . , b

j
m).

17: end for

in (a)j where the violation of dominance (a)j ⊀ (b̄)j+1 occur. We label an index
1 ≤ k < n to be critical if

k∑
i=1

aj
i >

k∑
i=1

b̄j+1
i . (1)

k being a critical index implies that in order to preserve dominance (a)j+1 ≺
(b̄j+1) within integer interval [1, k], we need to reduce at least

n �
k∑

i=1

aj
i −

k∑
i=1

b̄j+1
i (2)

number of 1’s at or before index k in (a)j. We say n is the margin of violation
corresponding to the critical index k. At every iteration, we enlist all the critical
indices and their corresponding margins of violation.

Algorithm 2 takes the degree and dimension sequences, (a)n and (b)m respec-
tively, sorted in descending order as input. We refer to them as (a)1 = (a)n and
(b)1 = (b)m (Line 1). Following that, it constructs the conjugate (b̄)1 of the
initial dimension sequence (b)1 (Line 2).

At each iteration j ∈ {1, . . . , m}, the algorithm constructs a conjugate
sequence for dimensions of (m − j) edges, namely (b̄)j+1, from the conjugate
sequence for dimensions of (m− j +1) edges, namely b̄j , by reducing the first bj

1

components in (b̄)j by 1 (Line 4). This is a consequence of Observation 1.

138 N. A. Arafat et al.

Following Observation 3, Algorithm 2 uses (a)j and (b̄)j+1 to compute all the
critical indices {kj

1, k
j
2, . . .} (Line 5) and their corresponding margins of violations

{nj
1, n

j
2, . . .} (Line 6). The critical indices partition {1, . . . , n} in integer intervals

Ij
i � [kj

i−1 + 1, kj
i].

Now, we select indices from these partitions and aggregate them to resolve
the critical indices. These selected indices construct a new edge ej . Following
Observation 2, this operation would reduce the problem of generating (m−j+1)
edges satisfying (a)j and (b)j to generating (m − j) edges satisfying (a)j+1 and
(b)j+1 conditioned on ej .

Specifically, in Line 7, the algorithm begins the edge construction considering
the edge ej to be empty. In Lines 8–13, Algorithm 2 selects batches of vertices
from integer interval Ij

i of indices and reduce 1 from them till all the critical
vertices kj

i ’s are considered. As these batches of vertices are selected, they are
incrementally added to ej .

Now, we elaborate selection of the batches of vertices from these intervals
as executed in Lines 9–10. At the ith step of selecting vertices, the algorithm
uniformly at random select oi indices from Ij

i . oi is an integer uniformly sampled
from the following lower and upper bounds:

– Lower bound: Since at least nj
i vertices have to be selected from [1, kj

i] to
reinstate dominance and |ej | vertices have already been selected from [1, kj

i−1],
the algorithm needs to select at least nj

i − |ej | vertices from Ij
i

– Upper bound: There are (kj
i − kj

i−1) indices in interval Ij
i . After selecting |ej |

vertices, the algorithm can not select more than bj
1 − |ej | vertices. Thus, the

maximum number of vertices selected from Ij
i is min(kj

i − kj
i−1, b

j
1 − |ej |).

Subsequently, the algorithm adds the oi vertices at those indices to the par-
tially constructed edge ej (Line 11) and reduce the components at those selected
indices in sequence (a)j by 1 (Line 12).

After adding the edge ej to the edge set E (Line 14), the algorithm sorts (a)j

in descending order to construct (a)j+1, removes bj
1 from (b)j to construct (b)j+1

(Line 15–16). In next iteration, the algorithm focuses on generating (m−j) edges
satisfying (a)j+1 and (b)j+1 conditioned on ej .

In order to prove correctness of Algorithm2, we prove Theorems 3 and 4.

Theorem 3. If the sequences (a)j and (b)j are realisable by a hypergraph with
m edges and n vertices, the sequences (a)j+1 and (b)j+1 as constructed by the
algorithm at iteration j +1 are realisable by a hypergraph with (m−1) edges and
n vertices.

Proof Sketch. This proof is similar to the proof of Theorem2 in spirit. The
only difference is in the inductive step, where we need to prove that the choice
of batches of vertices leads to (a)j+1 and (b)j+1 such that (a)j+1 ≺ (b̄)j+1.

After reducing 1 from the selected indices in (a)j , the resulting sequence
(a)j+1 follows the inequality

∑k
i=1 aj+1

i ≤ ∑k
i=1 b̄j+1

i at every index k < n.

Construction and Random Generation of Hypergraphs 139

Following Eq. 2, if index k is critical,
∑k

i=1 aj+1
i ≤ ∑k

i=1 aj
i − nk =

∑k
i=1 b̄j+1.

If k is not critical,
∑k

i=1 aj+1
i <

∑k
i=1 aj

i ≤ ∑k
i=1 b̄j+1 by Eq. (1). After all the

critical indices are considered,
∑n

i=1 aj+1
i = (

∑n
i=1 aj

i) − bj
1 = (

∑n
i=1 bj

i) − bj
1 =∑n

i=1 bj+1
i . Consequently, (a)j+1 ≺ (b̄)j+1.

Theorem 4. Algorithm2 constructs every hypergraph realisation of (a)n, (b)m

with a non-zero probability.

Proof sketch. Let us begin with an arbitrary hypergraph realisation H1 =
(V,E1 = {e1, . . . , em}) of sequences (a)1 = (a)n, (b)1 = (b)m such that |e1| ≥
|e2| ≥ . . . ≥ |em|.

At iteration 1, Algorithm 2 allocates vertices to edge e1 with a probability
P(e1) = o1

k1(min(b11,k1
1)−n1

1+1)
o2

(k1
2−k1

1)(min(k1
2−k1

1,b11−o1)−(n1
2−o1)+1)

. . .. P(e1) is non-
zero. Compute the conditional probabilities P(e2|e1), . . . , P(em|em−1, . . . , e1) in
a similar manner. Each of the probabilities is non-zero as a consequence of
Theorem 3. The joint probability with which the algorithm constructs the edge-
sequence E1 � {e1, . . . , em} is P(E1) � P(e1) P(e2|e1) . . . P(em|em−1, . . . , e1).
P(E1) > 0 as it is a product of non-zero terms. There are c(E1) = m!∏

j multE1 (ej)!

distinct permutations of E1 that result in the same hypergraph as H1. Here,
multE1(ej) is the multiplicity of edge ej in multiset E1. Let[E1] be the set
of all permutations of E1. Thus, the algorithm constructs H1 with probability
P(H1) �

∑
E∈[E1]

P(E). P(H1) being a sum of non-zero terms, is non-zero.

6 Self-Normalised Importance Sampling Estimator

In practice, it is desirable to apply a generation algorithm that samples hyper-
graphs from an uniform distribution over the population of hypergraphs Hab

having the prescribed degree and dimension sequences (a)n and (b)m. Uniform
generation is desirable, as uniformly generated sample hypergraphs from Hab

can be used to estimate properties of the hypergraph population Hab.
However, enumerating all hypergraphs from the population Hab is computa-

tionally infeasible as the problem of explicit enumeration of (0, 1)-matrices with
given row- and column-sums is #P-hard [11]. This result not only makes unbi-
ased estimation of properties of Hab computationally infeasible but also hardens
the validation of uniformity or unbiasedness of any random generation algo-
rithm. Testing whether a generation algorithm is uniform using state-of-the art
algorithms for uniformity testing [1] for the unknown discrete space Hab is also
computationally infeasible due to the astronomically large number of samples
required by the testing algorithm.

The inaccessibility of population space Hab motivates us to design an impor-
tance sampling based estimator. We use this estimator to estimate properties
of hypergraphs in Hab even if the induced distribution of generation algorithm
is not uniform. Importance sampling assigns weights to estimates derived from
non-uniformly generated hypergraph samples using the probability at which the
hypergraphs are generated. Importance sampling has been adopted to design

140 N. A. Arafat et al.

estimators for properties of matrices [7] and graphs [5]. We adopt it to design
an estimator for properties of hypergraphs.

Stepwise Design of the Estimator. Let the uniform distribution over hypergraphs
H ∈ Hab be U(H) � 1

|Hab| . We are interested in estimating expected value EU [f]
of some hypergraph property f : Hab → R. For example, f can be the average
clustering coefficient of the projection of the hypergraphs to graphs. If we are
able to access U and draw N i.i.d samples H ′

1, . . . , H
′
N accordingly, the Monte

Carlo estimate of μ(f) � EU [f] is 1
N

∑N
i=1 f(H ′

i). In practice, computing μ(f) is
not feasible as |Hab | is computationally infeasible to compute.

Thus, we draw N independent edge-sequences E1, . . . , EN from the space of
edge-sequences Eab leading to the hypergraphs in Hab. Using Algorithm 2, we
generate N such edge-sequences {Ei}N

i=1 with probabilities {P(Ei)}N
i=1 respec-

tively. We denote the hypergraph associated to an edge-sequence Ei as H(Ei).
The uniform distribution U over the space of hypergraphs Hab induces a dis-
tribution denoted as Û over the space of edge-sequences Eab. Subsequently, we
evaluate property f on the generated hypergraphs {H(Ei)}N

i=1 and apply Eq. 3
to estimate the population mean μ(f).

μ̂(f) =
1
N

N∑
i=1

Û(Ei)
P(Ei)

f(H(Ei)) �
N∑

i=1

wif(H(Ei)) (3)

This is analogous to endowing an importance weight wi to a sample H(Ei). The
sample mean μ̂ is an unbiased estimator of population mean μ, the proof of
which we omit for brevity.

Computing μ̂ is infeasible, as it requires computing Û which again requires
|Hab | and consequently |Eab| to be computed. Hence we adopt a self-normalised
importance sampling estimator (SNIS) that uses normalised weights wSNIS

i �
wi∑
i wi

. Although SNIS is a biased estimator, it works well in practice [5,7].

μ̃(f) �
∑N

i=1
Û(Ei)
P(Ei)

f(H(Ei))∑N
i=1

Û(Ei)
P(Ei)

=
N∑

i=1

1
P(Ei)∑N

i=1
1

P(Ei)

f(H(Ei)) �
N∑

i=1

wSNIS
i f(H(Ei))

(SNIS)

The effectiveness of the importance sampling estimator μ̂ in estimating f is
theoretically defined as the effective sampling size ESS � N V ar[μ(f)]

V ar[μ̃(f)] and often
approximated for SNIS estimator μ̃ as 1∑N

i=1(w
SNIS
i)2

[16]. ESS represents the
number of i.i.d samples from U required to obtain a Monte Carlo estimator μ̃
with the same accuracy as that of the uniform estimator μ.

7 Performance Evaluation

In order to evaluate the effectiveness of Algorithm 2, we generate multiple
random hypergraphs, project the random hypergraphs into simple unweighted

Construction and Random Generation of Hypergraphs 141

graphs, and empirically estimate (μ̃(CC)) the average clustering coefficient (CC)
on the projected graphs. For simplicity, we use the alias SNIS to imply the algo-
rithmic pipeline of generating several sample hypergraphs using Algorithm 2 and
then applying the estimator of Equation SNIS.

In order to evaluate the efficiency of our generation algorithm (Algorithm2),
we measure the CPU-time to generate a certain number of random hypergraphs
on different datasets.

7.1 Datasets

We use six graphs and two hypergraph datasets to evaluate the performance of
Algorithm 2 and compare with that of the MCMC algorithm.

Graphs. We use the pseudo-fractal family of scale-free simple graphs [10].
Pseudo-fractal graphs are a family (Gt), for integer t, of simple graphs where
every graph Gt has 3t, . . . , 32, 3, 3 vertices of degree 2, . . . , 2t, 2t+1 respectively.
The average clustering coefficient CCt of graph Gt is 4

5
6t+3/2
2t(2t+1) and approaches

4/5 as t grows [10]. We are unaware of any analytical form for the average cluster-
ing coefficient of projected random graphs3 generated following the same degree
sequence as Gt. However, we observe (Fig. 1) that the empirical expected value
of CCt converges to ∼0.27 as t grows. We construct six graphs {G1, . . . , G6}
from this family. {G1, . . . , G6} have degree sequences of sizes 6, 15, 42, 123, 366
and 1095 respectively, and dimension sequence of sizes 9, 27, 81, 243, 729 and
2187 respectively. The dimension sequence of each graph is a sequence of 2’s.

Hypergraphs. We use the Enron email correspondences and legislative bills in US
congress as hypergraph datasets [3](https://www.cs.cornell.edu/∼arb/data/). In
Enron dataset, the vertices are email addresses at Enron and an edge is com-
prised of the sender and all recipients of the email. The degree and dimension
sequences are of sizes 4423 and 15653 respectively. In congress-bills dataset,
the vertices are congresspersons and an edge is comprised of the sponsor and
co-sponsors (supporters) of a legislative bill put forth in both the House of Rep-
resentatives and the Senate. The degree and dimension sequences are of sizes
1718 and 260851 respectively.

7.2 Competing Algorithms

We compare the performance of SNIS algorithm, i.e. the SNIS estimator built
on our random generation algorithm, with the MCMC algorithm [8]. We make
two design choices regarding the MCMC algorithm. At first, as the choice for
initial hypergraph, we use our construction Algorithm2. Secondly, as the choice
for how many iterations to run the Markov chain, we perform autocorrelation
analysis on the Markov chain to select a lag value l. After selecting l, we select

3 Parallel-edges are absent after projection.

https://www.cs.cornell.edu/~arb/data/

142 N. A. Arafat et al.

G1 G2 G3 G4 G5 G6 Enron congress-bills
Datasets

10−2

10−1

100

E
st

im
at

e
of

µ
(C

C
)

CC (actual)
MCMC
SNIS

Fig. 1. Average clustering coefficients (in log-scale) of the projected random hyper-
graphs of different datasets and corresponding estimates μ(CC) using SNIS and MCMC
algorithms.

random hypergraphs from the chain at every l-th hop until required number
of hypergraphs are generated. Following standard autocorrelation analysis on
Markov chain literature [9], l is selected as the lag at which the autocorrelation
function of average clustering coefficient estimate drops below 0.001. On datasets
G1, G2, G3, G4, G5, G6, Enron and congress-bills, we observed and used lag
values of 17, 23, 115, 129, 90, 304, 9958 and 905 respectively.

7.3 Effectiveness

Comparative Analysis of Estimates of μ(CC). On graph dataset G1–G6, we
construct 500 random graphs (without loops) using both MCMC and Algo-
rithm2. On dataset Enron and congress-bills, we generate 100 and 20 random
hypergraphs (without loops) respectively using both MCMC and Algorithm2.
In Fig. 1, we illustrate CC estimates derived using SNIS, MCMC and the actual
dataset. In Fig. 1, we observe that on average after projection the value of clus-
tering coefficient of the multi-graph is much less than that of a simple graph. We
also observe that the average clustering coefficient for the hypergraphs empiri-
cally converge to 0.27 while the average clustering coefficient of corresponding
simple graphs converge to 0.8. This observation is rather expected as parallel-
edges decrease the number of triadic closures that would have existed in simple
graph. We also observe that, the standard deviation of the SNIS estimates are in
significantly smaller than that of the MCMC estimates and closer to the CC of
actual data. On Enron and congress-bills hypergraphs, MCMC and SNIS yield
comparable estimate for CC. Figure 1 indicates that in practice the efficiency
and stability of SNIS is either competitive or better than that of MCMC.

Effective Sample Sizes of Estimates of μ(CC). Effective sample size (ESS)
(Sect. 6) represents the number of i.i.d samples from an uniform sampler
required to obtain a uniform Monte Carlo estimator with the same accuracy

Construction and Random Generation of Hypergraphs 143

G1 G2 G3 G4 G5 G6 Enron congress-bills
Datasets

0

50

100

150

200

250

300

E
ffe

ct
iv

e
Sa

m
pl

e
Si

ze
MCMC
SNIS

Fig. 2. Effective sample sizes of SNIS
and MCMC algorithms on G1–G6,
Enron and congress-bills datasets.
Higher effective sample size indicates
better quality of samples.

G1 G2 G3 G4 G5 G6 Enron congress-bills
Datasets

104

105

106

107

108

C
P

U
-t

im
e

(s
ec

)

MCMC
SNIS

Fig. 3. CPU-time (in second, log-scale)
to generate 500 hypergraphs for G1–
G6, 100 hypergraphs for Enron and 20
hypergraphs for congress-bills datasets.
Lower CPU-time is better.

as that of the SNIS estimator Ep. ESS of SNIS algorithm is approximated by
(
∑N

i=1(w
SNIS
i)2)−1. The ESS of MCMC samples is defined as N

1+2
∑∞

l=1 ρ(CCl)
[9],

where ρ(CCl) is the autocorrelation function at lag l. We consider the summa-
tion up-to the lag value for which the autocorrelation drops less than 0.001. We
compute the ESS of estimate of CC from both MCMC and SNIS algorithms
and plot them in Fig. 2. In Fig. 2, we observe that the SNIS estimate of CC
exhibits higher effective sample size than the estimate using MCMC algorithm.
This observation implies that one can estimate CC using much less number of
SNIS samples than MCMC samples. Although the distinction is not much when
the hypergraphs are dense, as apparent from similar values of SNIS for graphs
G4, G5 and G6.

7.4 Efficiency

We measure the total CPU time (in seconds) taken by the MCMC and Algo-
rithm2 to generate 500 random graphs for the datasets G1–G6, 100 random
hypergraphs for Enron dataset, and 20 random hypergraphs for congress-bills
datasets respectively. We plot the CPU times in Fig. 3 for the datasets under
consideration. In Fig. 3, we observe that the MCMC algorithm is time-efficient
than Algorithm 2. In particular, it takes less CPU time in generating random
hypergraphs with relatively large number of vertices and edges. However, since
each run of Algorithm2 generates hypergraphs independently from previous
runs, multiple such hypergraphs can be generated in parallel for the purpose
of property estimation. However, such generation is not possible using MCMC
algorithm, as previously generated hypergraph are used to switch edges and
generate a new hypergraph. We leave potential parallelism as a future work.

8 Conclusion

We present two algorithms for construction as well as random generation of
hypergraphs with prescribed degree and dimension sequences. Our algorithms

144 N. A. Arafat et al.

leverage the transposition of properties and algorithms devised for (0, 1)-matrices
with prescribed row- and column-sums to hypergraphs. We prove the correct-
ness of the proposed algorithms. We also prove that the generation algorithm
generates any random hypergraph following prescribed degree and dimension
sequences with non-zero probability.

We propose a self-normalised importance sampling (SNIS) estimator to esti-
mate hypergraph properties and use it to empirically evaluate the effectiveness
of random generation.

We compare the effectiveness of the generation algorithm by comparing the
SNIS and MCMC estimates of the average clustering coefficient of the projected
graphs obtained from the family of hypergraphs having prescribed degree and
dimension sequences. As another measure of quality, we compare the effective
sample sizes of the SNIS and MCMC estimates.

Experimental results reveal that the SNIS estimates are often more accu-
rate and stable at estimating the average clustering coefficient and have higher
effective sample sizes compared to the MCMC estimates. Although the present
implementation of our generation algorithm takes longer to generate the same
number of samples than the MCMC algorithm, we are currently devising a par-
allel version of our algorithm.

Acknowledgement. This work was funded by Singapore Institute for Data Science
under project WATCHA, by MOE2017-T2-1-141 grant from Singapore Ministry of
Education, by WASP-NTU joint grant for Adversarial Machine Learning in Big Data
Era by the Knut and Alice Wallenberg Foundation, and by National Research Founda-
tion (NRF) Singapore under its Corporate Laboratory@University Scheme, National
University of Singapore, and Singapore Telecommunications Ltd.

References

1. Batu, T., Canonne, C.L.: Generalized uniformity testing. In: 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE (2017)

2. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given
degree sequences. J. Combin. Theory, Ser. A 24(3), 296–307 (1978)

3. Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial
closure and higher-order link prediction. Proc. Nat. Acad. Sci. 115(48), E11221–
E11230 (2018)

4. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd. (1985)
5. Blitzstein, J., Diaconis, P.: A sequential importance sampling algorithm for gener-

ating random graphs with prescribed degrees. Internet Math. 6(4), 489–522 (2011)
6. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of

labelled regular graphs. Eur. J. Comb. 1(4), 311–316 (1980)
7. Chen, Y., Diaconis, P., Holmes, S.P., Liu, J.S.: Sequential Monte Carlo methods

for statistical analysis of tables. J. Am. Stat. Assoc. 100(469), 109–120 (2005)
8. Chodrow, P.S.: Configuration models of random hypergraphs. arXiv preprint

arXiv:1902.09302 pp. 1–20 (2019)
9. Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a

comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996)

http://arxiv.org/abs/1902.09302

Construction and Random Generation of Hypergraphs 145

10. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Pseudofractal scale-free web.
Phys. Rev. E 65(6), 066122 (2002)

11. Dyer, M., Kannan, R., Mount, J.: Sampling contingency tables. Random Struct.
Algorithms 10(4), 487–506 (1997)

12. Fosdick, B.K., Larremore, D.B., Nishimura, J., Ugander, J.: Configuring random
graph models with fixed degree sequences. SIAM Rev. 60(2), 315–355 (2018)

13. Fulkerson, D.R., Ryser, H.J.: Multiplicities and minimal widths for (0, 1)-matrices.
Can. J. Math. 14, 498–508 (1962)

14. Gale, D., et al.: A theorem on flows in networks. Pac. J. Math. 7(2), 1073–1082
(1957)

15. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS Com-
put. Biol. 5(5), e1000385 (2009)

16. Kong, A.: A note on importance sampling using standardized weights. University
of Chicago, Department of Statistics, Technical report 348 (1992)

17. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and
Its Applications, vol. 143. Springer, New York (1979). https://doi.org/10.1007/
978-0-387-68276-1

18. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E., Alon, U.: On the uniform
generation of random graphs with prescribed degree sequences. arXiv preprint
cond-mat/0312028 (2003)

19. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2018)
20. Ryser, H.: Combinatorial properties of matrices of zeros and ones. Can. J. Math.

9, 371–377 (1957)
21. Yang, W., Wang, G., Bhuiyan, M., Choo, K.: Hypergraph partitioning for social

networks based on information entropy modularity. J. Netw. Comput. Appl. 86,
59–71 (2016)

22. Wang, Y., Zheng, B.: Hypergraph index: an index for context-aware nearest neigh-
bor query on social networks. Soc. Netw. Anal. Min. 3(4), 813–828 (2013)

https://doi.org/10.1007/978-0-387-68276-1
https://doi.org/10.1007/978-0-387-68276-1

	Construction and Random Generation of Hypergraphs with Prescribed Degree and Dimension Sequences
	1 Introduction
	2 Hypergraphs and (0,1)-matrices
	3 Related Works
	3.1 Graphs with a Prescribed Degree Sequence
	3.2 Hypergraphs with Prescribed Degree and Dimension Sequences

	4 Construction of an Initial Hypergraph
	5 Random Generation of Hypergraphs
	6 Self-Normalised Importance Sampling Estimator
	7 Performance Evaluation
	7.1 Datasets
	7.2 Competing Algorithms
	7.3 Effectiveness
	7.4 Efficiency

	8 Conclusion
	References

