Construction and Random Generation of Hypergraphs with Prescribed Degree and Dimension Sequences

Naheed Anjum Arafat ${ }^{1}$, Debabrota Basu ${ }^{2}$, Laurent Decreusefond ${ }^{3}$, Stéphane Bressan ${ }^{1}$

${ }^{1}$ National University of Singapore
${ }^{2}$ Chalmers University of Technology, Sweden
${ }^{3}$ LTCI, Télécom Paris, France.

November 25, 2020

Hypergraphs

- Data with dyadic relations: Graph (Vertices, Edges)
- Data with poly-adic relations: Hypergraph (Vertices, hyperedges)

Figure 1: A hypergraph representing a paper co-authored by \{John,Alice,Peter\}

Hypergraphs

－Data with dyadic relations：Graph（Vertices，Edges）
－Data with poly－adic relations：Hypergraph（Vertices，hyperedges）

Figure 1：A hypergraph representing a paper co－authored by \｛John，Alice，Peter\}
－Degree： $\operatorname{deg}($ Alice $)=1$
－Dimension： $\operatorname{dim}(\{$ John，Alice，Peter $\})=3$

What is this Talk About？

Generating hypergraphs with a prescribed degree and dimension constraints．

－Peter，Alice，Bob and John wrote 3，2， 2 and 2 papers respectively（degree constraint）
－There are three papers with 4,3 and 2 authors respectively．（dimension constraint）
Generate a hypergraph conforming to these constraints．

Contributions：

（3）An algorithm to construct a conforming hypergraph．
－Correctness．

Contributions:

(1) An algorithm to construct a conforming hypergraph.

- Correctness.
(2) An algorithm to construct a random conforming hypergraph.
- Correctness.
- Can generate all possible conforming hypergraphs.

Contributions:

(3) An algorithm to construct a conforming hypergraph.

- Correctness.
(2) An algorithm to construct a random conforming hypergraph.
- Correctness.
- Can generate all possible conforming hypergraphs.

- Application:

We devise an Importance Sampling estimator for estimating population mean of some property of the conforming hypergraphs.

Give me a hypergraph: Deterministic Construction.

Input: A Labelled degree sequence and a dimension sequence Output: A conforming hypergraph (parallel-edges allowed)

Give me a hypergraph：Deterministic Construction．

Input：A Labelled degree sequence and a dimension sequence Output：A conforming hypergraph（parallel－edges allowed） The main ideas：
－Construct edges starting from those with the largest to the smallest dimensions．

Give me a hypergraph: Deterministic Construction.

Input: A Labelled degree sequence and a dimension sequence Output: A conforming hypergraph (parallel-edges allowed) The main ideas:

- Construct edges starting from those with the largest to the smallest dimensions.
- Edge construction: Assign vertices with the largest residual degrees.

	Peter (3)	Alice (2)	Bob (2)	John (2)
e_{1} (4)	1	1	1	1
e_{2} (3)				
e_{3} (2)				

$H=\{\{$ Peter, Alice, Bob,John $\}, \phi, \phi\}$

$H=\{$
$\{$ Peter,Alice, Bob,John $\}$,
$\{$ Peter, Alice, Bob \},
$\phi\}$

	Peter (1)	Alice (0)	Bob (0)	John (1)
e_{1} (4)	1	1	1	1
e_{2} (3)	1	1	1	
e_{3} (2)	1			1

$H=\{$
\{Peter,Alice, Bob,John \}
$\{$ Peter, Alice, Bob \},
\{Peter,John $\}$ \}

Steps of our proposed algorithm.

Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.
Requirement: All conforming hypergraphs should be possible to generate.

	Peter (3)	Alice (2)	Bob (2)	John (2)
e_{1} (4)	1	1	1	1
e_{2} (3)	1	1	1	
e_{3} (2)	1			1

$H_{1}=\{$
\{Peter, Alice, Bob, John \},
$\{$ Peter, Alice, Bob \},
\{Peter,John\}\}

	Peter (3)	Alice (2)	Bob (2)	John (2)
e_{1}	1	1	1	1
(4)		1	1	
e_{2} (3)	1			
e_{3}				
(2)	1	1		

$H_{2}=\{$
\{Peter,Alice, Bob,John\} \{Peter, Bob,John\}, \{Peter,Alice $\}\}$

	Peter (3)	Alice (2)	Bob (2)	John (2)
e_{1} (4)	1	1	1	1
e_{2} (3)	1	1		1
e_{3} (2)	1		1	

$H_{3}=\{$
\{Peter, Alice, Bob,John \}, $\{$ Peter, Alice, John\}, \{Peter,Bob\}\}

Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.
Requirement: All conforming hypergraphs should be possible to generate.
$\left.\left.\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { Peter } \\ (3)\end{array} & \begin{array}{l}\text { Alice } \\ (2)\end{array} & \begin{array}{l}\text { Bob } \\ (2)\end{array} & \begin{array}{l}\text { John } \\ (2)\end{array} \\ \hline e_{1} & 1 & 1 & 1 & 1 \\ (4)\end{array} \right\rvert\, \begin{array}{c}e_{2} \\ (3)\end{array}\right)$
$H_{1}=\{$
\{Peter, Alice, Bob, John \},
$\{$ Peter, Alice, Bob \}, \{Peter,John\}\}

	Peter (3)	Alice (2)	Bob (2)	John (2)
e_{1}	1	1	1	1
(4)		1	1	
e_{2} (3)	1			
e_{3}				
(2)	1	1		

$H_{2}=\{$
\{Peter,Alice, Bob,John \}, \{Peter, Bob,John\}, \{Peter,Alice\}\}

	Peter (3)	Alice (2)	Bob (2)	John (2)
e_{1} (4)	1	1	1	1
e_{2} (3)	1	1		1
e_{3} (2)	1		1	

$H_{3}=\{$
\{Peter, Alice, Bob,John \}, \{Peter, Alice, John\}, \{Peter, Bob\}\}

The main idea:

- Construct edges starting from those with the largest to the smallest dimensions.

Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.
Requirement: All conforming hypergraphs should be possible to generate.
$\left.\left.\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { Peter } \\ (3)\end{array} & \begin{array}{l}\text { Alice } \\ (2)\end{array} & \begin{array}{l}\text { Bob } \\ (2)\end{array} & \begin{array}{l}\text { John } \\ (2)\end{array} \\ \hline e_{1} & 1 & 1 & 1 & 1 \\ (4)\end{array} \right\rvert\, \begin{array}{c}1 \\ \hline e_{2} \\ (3)\end{array}\right)$
$H_{1}=\{$
\{Peter, Alice, Bob,John\}, \{Peter, Alice, Bob\}, \{Peter,John\}\}

	Peter (3)	Alice (2)	Bob (2)	John (2)
e_{1}	1	1	1	1
(4)		1	1	
e_{2} (3)	1			
e_{3}				
(2)	1	1		

$H_{2}=\{$
\{Peter,Alice, Bob,John\} \{Peter, Bob,John\}, \{Peter,Alice \}\}

	Peter (3)	Alice (2)	Bob (2)	John (2)
e_{1} (4)	1	1	1	1
e_{2} (3)	1	1		1
e_{3} (2)	1		1	

$H_{3}=\{$
\{Peter, Alice, Bob,John\}, \{Peter, Alice, John \}, \{Peter,Bob\}\}

The main idea:

- Construct edges starting from those with the largest to the smallest dimensions.
- Edge construction: At each iteration,
- Divide the columns with non-zero degrees into blocks of intervals.
- Determine the number of vertices to select from each block.
- Select the required \# of vertices from each block uniformly at random.

Random Edge construction

Suppose, the algorithm already constructed edge $e_{1}=\{$ Peter, Alice, Bob, John $\}$.
Residual dim. sequence: $(3,2)$.
Residual deg. sequence: $(2,1,1,1)$

(i)				

Random Edge construction

Suppose, the algorithm already constructed edge $e_{1}=\{$ Peter, Alice, Bob, John $\}$.
Residual dim. sequence: $(3,2)$.
Residual deg. sequence: $(2,1,1,1)$

Constructing e_{2} :

- Construct conjugate of the residual dimension sequence (ignoring first component):
- Conjugate of $\left(_, 2\right)=(\#$ integers $>=1, \#$ integers $>=2, .)=.(1,1,0,0)$.

Random Edge construction

Suppose, the algorithm already constructed edge $e_{1}=\{$ Peter, Alice, Bob, John $\}$.
Residual dim. sequence: $(3,2)$.
Residual deg. sequence: $(2,1,1,1)$

a				
通				

Constructing e_{2} :

- Construct conjugate of the residual dimension sequence (ignoring first component):
- Conjugate of $\left(_, 2\right)=(\#$ integers $>=1, \#$ integers $>=2, .)=.(1,1,0,0)$.
- Construct its prefix sums : $(1,2,2,2)$ (Say, $(\beta))$

Random Edge construction

Suppose, the algorithm already constructed edge $e_{1}=\{$ Peter, Alice, Bob, John $\}$.
Residual dim. sequence: $(3,2)$.
Residual deg. sequence: $(2,1,1,1)$

Constructing e_{2} :

- Construct conjugate of the residual dimension sequence (ignoring first component):
- Conjugate of $\left(_, 2\right)=(\#$ integers $>=1, \#$ integers $>=2, .)=.(1,1,0,0)$.
- Construct its prefix sums : $(1,2,2,2)(S a y,(\beta))$
- Construct prefix sums of the residual degree sequence: $(2,3,4,5)$ (Say, $(\alpha))$

Random Edge construction

Suppose, the algorithm already constructed edge $e_{1}=\{$ Peter, Alice, Bob, John $\}$.
Residual dim. sequence: $(3,2)$.
Residual deg. sequence: $(2,1,1,1)$

Constructing e_{2} :

- Construct conjugate of the residual dimension sequence (ignoring first component):
- Conjugate of $\left(_, 2\right)=(\#$ integers $>=1, \#$ integers $>=2, .)=.(1,1,0,0)$.
- Construct its prefix sums : $(1,2,2,2)(S a y,(\beta))$
- Construct prefix sums of the residual degree sequence: $(2,3,4,5)$ (Say, $(\alpha))$
- Compute $(\alpha)-(\beta):(1,1,2,3)$

Random Edge construction

Suppose, the algorithm already constructed edge $e_{1}=\{$ Peter, Alice, Bob, John $\}$.
Residual dim. sequence: $(3,2)$.
Residual deg. sequence: $(2,1,1,1)$

(9)				

Constructing e_{2} :

- Construct conjugate of the residual dimension sequence (ignoring first component):
- Conjugate of $\left(_, 2\right)=(\#$ integers $>=1, \#$ integers $>=2, .)=.(1,1,0,0)$.
- Construct its prefix sums : $(1,2,2,2)($ Say, $(\beta))$
- Construct prefix sums of the residual degree sequence: $(2,3,4,5)$ (Say, $(\alpha))$
- Compute $(\alpha)-(\beta):(1,1,2,3)$
- At least $1,1,2$ and 3 vertices need to be selected from the first column, first 2 columns, first 3 columns and first 4 columns resp. (Dominance conditions.)

Random Edge construction

Suppose, the algorithm already constructed edge $e_{1}=\{$ Peter, Alice, Bob, John $\}$.
Residual dim. sequence: $(3,2)$.
Residual deg. sequence: $(2,1,1,1)$

Constructing e_{2} :

- Construct conjugate of the residual dimension sequence (ignoring first component):
- Conjugate of $\left(_, 2\right)=(\#$ integers $>=1, \#$ integers $>=2, .)=.(1,1,0,0)$.
- Construct its prefix sums : $(1,2,2,2)(S a y,(\beta))$
- Construct prefix sums of the residual degree sequence: $(2,3,4,5)$ (Say, $(\alpha))$
- Compute $(\alpha)-(\beta):(1,1,2,3)$
- At least $1,1,2$ and 3 vertices need to be selected from the first column, first 2 columns, first 3 columns and first 4 columns resp. (Dominance conditions.)
- Divide the columns into disjoint blocks such that the dominance conditions are satisfied.

Application: Property estimation

Suppose, we are interested in some property $f: \mathcal{H}_{a b} \rightarrow \mathbb{R}$ of the conforming hypergraphs of a degree sequence $(a)_{n}$ and dimension sequence $(b)_{m}$

Importance sampling Estimator of $E[f]$.

- Good:
- The probabilities can be computed during random generation.
- $\hat{\mu}$ is an unbiased estimator of $E[f]^{1}$
- Bad: $\left|\mathcal{H}_{a b}\right|$ is often unknown.
${ }^{1}$ (Proof: Extended paper arXiv:2004.05429)

Application: Property estimation

A practical solution: Normalise the weights in the summation.

We use $\tilde{\mu}$ to estimate population mean $E(f)$.
$f=$ average clustering coefficient of the graph of the conforming hypergraphs.

Experimental Results

Datasets:

| Datasets | \|Degree seq. | \|Dimension seq.| |
| :--- | :--- | :--- |
| G_{1} | 6 | 9 |
| G_{2} | 15 | 27 |
| G_{3} | 42 | 81 |
| G_{4} | 123 | 243 |
| G_{5} | 366 | 719 |
| G_{6} | 1095 | 2187 |
| Enron | 4423 | 15653 |
| Congress_bills | 1718 | 260851 |

Competing Algorithm. MCMC (Philip S. Chodrow, 2019, arXiv)

- Start with an initial conforming hypergraph.
- For T iterations,
- select a pair of random edges
- Exchange vertices to produce new edge-pairs with some prob.

Effectiveness Comparison

Figure 2: Effective sample sizes of SNIS and MCMC algorithms on different datasets. Higher effective sample size indicates better quality of samples.

- ESS represents the number of i.i.d samples which have the same accuracy as the Monte Carlo estimates (e.g. SNIS, MCMC estimates)
- SNIS estimates equates to more i.i.d sample than MCMC estimates in most of the datasets.

Efficiency Comparison

Figure 3: CPU-time (in second, log-scale) to generate 500 hypergraphs for $G_{1}-G_{6}, 100$ hypergraphs for Enron and 20 hypergraphs for congress-bills datasets.

- Efficiency of the random generation algorithm is an issue.
- Silver lining: It is often easier to parallelize a direct generation algorithm than an Markov chain based generation algorithm.

Summary.

- We propose an algorithm that constructs a hypergraph with a prescribed degree and dimension sequence.
- We propose an algorithm that generates a random hypergraph with a prescribed degree and dimension sequence.
- We propose an SNIS estimator to estimate hypergraph properties and use it to empirically evaluate the effectiveness of random generation.
- SNIS estimator has higher effective sample sizes compared to the MCMC estimator.

Summary．

－We propose an algorithm that constructs a hypergraph with a prescribed degree and dimension sequence．
－We propose an algorithm that generates a random hypergraph with a prescribed degree and dimension sequence．
－We propose an SNIS estimator to estimate hypergraph properties and use it to empirically evaluate the effectiveness of random generation．
－SNIS estimator has higher effective sample sizes compared to the MCMC estimator．
－Issue：Efficiency of the random generation．
－Future work：Random generation in parallel is underway．

Q\&A

Supplementary slide

Figure 4: Average clustering coefficients (in log-scale) of the projected random hypergraphs of different datasets and corresponding estimates $\mu(C C)$ using SNIS and MCMC algorithms.

SNIS estimates are more accurate and stable than the MCMC estimates.

Supplementary slide

Gale-Rysers criteria:

An incidence matrix with column-sum $(a)_{n}$ and row-sum $(b)_{m}$ exists if and only if $(a)_{n}$ is dominated by the conjugate of $(b)_{m}$

Example:

Is there any conforming hypergraph with degrees $(3,2,2,2)$ and dimensions $(4,3,2)$?

- Conjugate of $(4,3,2)=$ (\#components ≥ 1, \#components \geq 2 , \#components $\geq 3, \ldots)=(3,3,2,1)$
- Dominance check:
- Is $a_{1} \leq \bar{b}_{1}$?: $(3 \leq 3) \rightarrow$ yes
- Is $a_{1}+a_{2} \leq \bar{b}_{1}+\bar{b}_{2}$?: $(3+2 \leq 3+3)$? \rightarrow yes
- Is $a_{1}+a_{2}+a_{3} \leq \bar{b}_{1}+\bar{b}_{2}+\bar{b}_{3}$?: $(3+2+2 \leq 3+3+2)$? \rightarrow yes
- Is

$$
a_{1}+a_{2}+a_{3}+a_{4}==\bar{b}_{1}+\bar{b}_{2}+\bar{b}_{3}+\bar{b}_{4} ?:(3+2+2+2==3+3+2+1) ?: \text { yes }
$$

Supplementary slide

	$\begin{gathered} \text { Any }(a)_{n}, \\ (b)_{m}=(2, \ldots, 2) \\ \text { (graph) } \end{gathered}$	$\begin{gathered} \text { Any }(a)_{n}, \\ (b)_{m}=(k, \ldots, k) \\ (k \text {-uniform hyp.) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Any }(a)_{n} \text { and }(b)_{m} \\ \text { (hyp.) } \end{gathered}$
Simple	Erdös-Gallai: $\sum a_{i}$ even and $\forall k$, $\sum_{i=1}^{k} a_{i} \leq k(k-1)+$ $\sum_{i=k+1}^{n} \min \left(a_{i}, k\right)$	Unknown	Unknown
Parallel-edge allowed	Hakimi: $\sum a_{i}$ even and $a_{1} \leq a_{2}+\ldots+a_{n}$	Billington: $\sum a_{i}=k m$ and $\forall i, a_{i} \leq m$	$\begin{gathered} \text { Gale-Ryser: } \\ \sum a_{i}=\sum_{i} b_{i} \\ \text { and } \\ \forall k, \\ \sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}^{*} \end{gathered}$

Table 1: Results on necessary and sufficient conditions for sequences to be realisable as graphs and hypergraphs. Degree sequence is (a) and dimension sequence (b).

