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Hypergraphs

Data with dyadic relations: Graph (Vertices, Edges)
Data with poly-adic relations: Hypergraph (Vertices, hyperedges)

Figure 1: A hypergraph representing a paper co-authored by {John,Alice,Peter}

Degree: deg(Alice) = 1
Dimension: dim({John,Alice,Peter}) = 3
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What is this Talk About?

Generating hypergraphs with a prescribed degree
and dimension constraints.

Peter, Alice, Bob and John wrote 3 , 2, 2 and 2 papers respectively (degree
constraint)

There are three papers with 4, 3 and 2 authors respectively. (dimension constraint)

Generate a hypergraph conforming to these constraints.



Contributions:

1 An algorithm to construct a conforming hypergraph.
Correctness.

2 An algorithm to construct a random conforming hypergraph.
Correctness.
Can generate all possible conforming hypergraphs.

3 Application:

Degree sequence
𝑎 𝑛

Dimension 
sequence 𝑏 𝑚

Compute
popula�on mean
𝜇(𝑓) of some

property𝑓

𝜇(𝑓)

Set of all
conforming
hypergraphs
(ℋ𝑎𝑏 )

We devise an Importance Sampling estimator for estimating population mean
of some property of the conforming hypergraphs.
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Give me a hypergraph: Deterministic Construction.

Input: A Labelled degree sequence and a dimension sequence
Output: A conforming hypergraph (parallel-edges allowed)

The main ideas:
Construct edges starting from those with the largest to the smallest
dimensions.
Edge construction: Assign vertices with the largest residual degrees.

Peter 
(3)

Alice
(2)

Bob
(2)

John
(2)

𝑒1
(4)

1 1 1 1

𝑒2
(3)

𝑒3
(2)

Peter 
(2)

Alice
(1)

Bob
(1)

John
(1)

𝑒1
(4)

1 1 1 1

𝑒2
(3)

1 1 1

𝑒3
(2)

𝐻 = { 𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏, 𝐽𝑜ℎ𝑛 ,𝜙,𝜙}

• Decrease the first |e_1|
= 4 components of
(3,2,2,2) by 1.

• Sort

𝐻 = {
𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏, 𝐽𝑜ℎ𝑛 ,
𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏 ,

𝜙}

Peter 
(1)

Alice
(0)

Bob
(0)

John
(1)

𝑒1
(4)

1 1 1 1

𝑒2
(3)

1 1 1

𝑒3
(2)

1 1

• Decrease the first
|e_2| = 3 components
of (2,1,1,1) by 1.

• Sort

𝐻 = {
𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏, 𝐽𝑜ℎ𝑛 ,
𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏 ,
{𝑃𝑒𝑡𝑒𝑟, 𝐽𝑜ℎ𝑛}}

Steps of our proposed algorithm.
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Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.
Requirement: All conforming hypergraphs should be possible to generate.
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𝐻2 = {
𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏, 𝐽𝑜ℎ𝑛 ,
𝑃𝑒𝑡𝑒𝑟,𝐵𝑜𝑏, 𝐽𝑜ℎ𝑛 ,
{𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒}}

𝐻3 = {
𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏, 𝐽𝑜ℎ𝑛 ,
𝑃𝑒𝑡𝑒𝑟,𝐴𝑙𝑖𝑐𝑒, 𝐽𝑜ℎ𝑛 ,
{𝑃𝑒𝑡𝑒𝑟,𝐵𝑜𝑏}}

The main idea:
Construct edges starting from those with the largest to the smallest
dimensions.
Edge construction: At each iteration,

Divide the columns with non-zero degrees into blocks of intervals.
Determine the number of vertices to select from each block.
Select the required # of vertices from each block uniformly at random.
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Random Edge construction
Suppose, the algorithm already constructed edge e1 = {Peter ,Alice,Bob, John}.

Residual dim. sequence: (3, 2).
Residual deg. sequence: (2, 1, 1, 1)

Peter 
(2)

Alice
(1)

Bob
(1)

John
(1)

𝑒1
(4)

1 1 1 1

𝑒2
(3)

𝑒3
(2)

Constructing e2:
Construct conjugate of the residual dimension sequence (ignoring first
component):

Conjugate of (_, 2) = (#integers >= 1,#integers >= 2, ..) = (1, 1, 0, 0).

Construct its prefix sums : (1, 2, 2, 2) (Say, (β))

Construct prefix sums of the residual degree sequence: (2, 3, 4, 5) (Say, (α))
Compute (α)− (β) : (1, 1, 2, 3)

At least 1,1,2 and 3 vertices need to be selected from the first column, first
2 columns, first 3 columns and first 4 columns resp. (Dominance conditions.)

Divide the columns into
disjoint blocks such that the
dominance conditions are
satisfied.

Peter
(2)

Alice
(1)

Bob
(1)

John
(1)

𝑒1
(4)

1 1 1 1

𝑒2
(3)

𝑒3
(2)select 1 vertex select 2 ver�ces
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Divide the columns into
disjoint blocks such that the
dominance conditions are
satisfied.

Peter
(2)

Alice
(1)

Bob
(1)

John
(1)

𝑒1
(4)

1 1 1 1

𝑒2
(3)

𝑒3
(2)select 1 vertex select 2 ver�ces



Random Edge construction
Suppose, the algorithm already constructed edge e1 = {Peter ,Alice,Bob, John}.

Residual dim. sequence: (3, 2).
Residual deg. sequence: (2, 1, 1, 1)

Peter 
(2)

Alice
(1)

Bob
(1)

John
(1)

𝑒1
(4)

1 1 1 1

𝑒2
(3)

𝑒3
(2)

Constructing e2:
Construct conjugate of the residual dimension sequence (ignoring first
component):

Conjugate of (_, 2) = (#integers >= 1,#integers >= 2, ..) = (1, 1, 0, 0).

Construct its prefix sums : (1, 2, 2, 2) (Say, (β))

Construct prefix sums of the residual degree sequence: (2, 3, 4, 5) (Say, (α))
Compute (α)− (β) : (1, 1, 2, 3)

At least 1,1,2 and 3 vertices need to be selected from the first column, first
2 columns, first 3 columns and first 4 columns resp. (Dominance conditions.)

Divide the columns into
disjoint blocks such that the
dominance conditions are
satisfied.

Peter
(2)

Alice
(1)

Bob
(1)

John
(1)

𝑒1
(4)

1 1 1 1

𝑒2
(3)

𝑒3
(2)select 1 vertex select 2 ver�ces



Application: Property estimation

Suppose, we are interested in some property f : Hab → R of the conforming
hypergraphs of a degree sequence (a)n and dimension sequence (b)m

Random 
Genera�on
Algorithm

Degree sequence
𝑎 𝑛

Dimension 
sequence 𝑏 𝑚

𝐻1 = 𝐸1
1,𝐸2

1, … ,𝐸𝑚
1

𝐻2 = {𝐸1
2,𝐸2

2, … ,𝐸𝑚
2 }

…
𝐻𝑁 = {𝐸1

𝑁 ,𝐸2
𝑁 , … ,𝐸𝑚

𝑁}
𝜇 =

1

𝑁

1
|ℋ𝑎𝑏 |

𝑃(𝐻𝑖)
𝑓 𝐻𝑖

𝑁

𝑖=1

|ℋ𝑎𝑏 | = number of conforming
hypergraphs
𝑃(𝐻𝑖) = Probability of genera�ng
hypergraph𝐻𝑖

Importance sampling Estimator of E [f ].

Good:
The probabilities can be computed during random generation.
µ̂ is an unbiased estimator of E [f ] 1

Bad: |Hab| is often unknown.

1(Proof: Extended paper arXiv:2004.05429)



Application: Property estimation

A practical solution: Normalise the weights in the summation.

Random 
Genera�on
Algorithm

Degree sequence
𝑎 𝑛

Dimension 
sequence 𝑏 𝑚

𝐻1 = 𝐸1
1,𝐸2

1, … ,𝐸𝑚
1

𝐻2 = {𝐸1
2,𝐸2

2, … ,𝐸𝑚
2 }

…
𝐻𝑁 = {𝐸1

𝑁 ,𝐸2
𝑁 , … ,𝐸𝑚

𝑁}
𝜇 =

1
𝑃 𝐻𝑖

1
𝑃 𝐻𝑖

𝑁
𝑖=1

𝑓 𝐻𝑖
𝑁

𝑖=1

Self-Normalised Importance Sampling (SNIS) Estimator for E [f ].

We use µ̃ to estimate population mean E (f ).
f =average clustering coefficient of the graph of the conforming hypergraphs.



Experimental Results

Datasets:

Datasets |Degree seq.| |Dimension seq.|
G1 6 9
G2 15 27
G3 42 81
G4 123 243
G5 366 719
G6 1095 2187
Enron 4423 15653
Congress_bills 1718 260851

Competing Algorithm. MCMC (Philip S. Chodrow, 2019, arXiv )
Start with an initial conforming hypergraph.
For T iterations,

select a pair of random edges
Exchange vertices to produce new edge-pairs with some prob.



Effectiveness Comparison

G1 G2 G3 G4 G5 G6 Enron congress-bills
Datasets
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Figure 2: Effective sample sizes of SNIS and MCMC algorithms on different datasets. Higher effective
sample size indicates better quality of samples.

ESS represents the number of i.i.d samples which have the same accuracy as
the Monte Carlo estimates (e.g. SNIS, MCMC estimates)
SNIS estimates equates to more i.i.d sample than MCMC estimates in most
of the datasets.



Efficiency Comparison

G1 G2 G3 G4 G5 G6 Enron congress-bills
Datasets
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Figure 3: CPU-time (in second, log-scale) to generate 500 hypergraphs for G1-G6, 100 hypergraphs for
Enron and 20 hypergraphs for congress-bills datasets.

Efficiency of the random generation algorithm is an issue.
Silver lining: It is often easier to parallelize a direct generation algorithm
than an Markov chain based generation algorithm.



Summary.

We propose an algorithm that constructs a hypergraph with a prescribed
degree and dimension sequence.
We propose an algorithm that generates a random hypergraph with a
prescribed degree and dimension sequence.
We propose an SNIS estimator to estimate hypergraph properties and use it
to empirically evaluate the effectiveness of random generation.

SNIS estimator has higher effective sample sizes compared to the MCMC
estimator.

‘

Issue: Efficiency of the random generation.
Future work: Random generation in parallel is underway.



Summary.

We propose an algorithm that constructs a hypergraph with a prescribed
degree and dimension sequence.
We propose an algorithm that generates a random hypergraph with a
prescribed degree and dimension sequence.
We propose an SNIS estimator to estimate hypergraph properties and use it
to empirically evaluate the effectiveness of random generation.

SNIS estimator has higher effective sample sizes compared to the MCMC
estimator. ‘

Issue: Efficiency of the random generation.
Future work: Random generation in parallel is underway.
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Supplementary slide

G1 G2 G3 G4 G5 G6 Enron congress-bills
Datasets
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Figure 4: Average clustering coefficients (in log-scale) of the projected random hypergraphs of different
datasets and corresponding estimates µ(CC) using SNIS and MCMC algorithms.

SNIS estimates are more accurate and stable than the MCMC estimates.



Supplementary slide

Gale-Rysers criteria:
An incidence matrix with column-sum (a)n and row-sum (b)m exists if and only if
(a)n is dominated by the conjugate of (b)m

Example:
Is there any conforming hypergraph with degrees (3, 2, 2, 2) and dimensions
(4, 3, 2)?

Conjugate of (4, 3, 2) = (#components ≥ 1,#components ≥
2,#components ≥ 3, . . .) = (3, 3, 2, 1)
Dominance check:

Is a1 ≤ b̄1? : (3 ≤ 3)→yes
Is a1 + a2 ≤ b̄1 + b̄2? : (3 + 2 ≤ 3 + 3)?→yes
Is a1 + a2 + a3 ≤ b̄1 + b̄2 + b̄3? : (3 + 2 + 2 ≤ 3 + 3 + 2)?→yes
Is
a1 + a2 + a3 + a4 == b̄1 + b̄2 + b̄3 + b̄4? : (3+ 2+ 2+ 2 == 3+ 3+ 2+ 1)?:yes



Supplementary slide

Any (a)n,
(b)m = (2, . . . , 2)

(graph)

Any (a)n,
(b)m = (k, . . . , k)

(k-uniform hyp.)
Any (a)n and (b)m

(hyp.)

Simple

Erdös-Gallai:∑
ai even
and
∀k,∑k

i=1 ai ≤ k(k − 1)+∑n
i=k+1 min(ai , k) Unknown Unknown

Parallel-edge allowed

Hakimi:∑
ai even
and

a1 ≤ a2 + . . .+ an

Billington:∑
ai = km

and
∀i , ai ≤ m

Gale-Ryser:∑
ai =

∑
bi

and
∀k,∑k

i=1 ai ≤
∑k

i=1 b
∗
i

Table 1: Results on necessary and sufficient conditions for sequences to be realisable as graphs and
hypergraphs. Degree sequence is (a) and dimension sequence (b).


