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Hypergraphs

o Data with dyadic relations: Graph (Vertices, Edges)
o Data with poly-adic relations: Hypergraph (Vertices, hyperedges)
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Figure 1: A hypergraph representing a paper co-authored by {John,Alice,Peter}

o Degree: deg(Alice) =1
e Dimension: dim({John, Alice, Peter}) = 3



What is this Talk About?

Generating hypergraphs with a prescribed degree
and dimension constraints.

@ Peter, Alice, Bob and John wrote 3, 2, 2 and 2 papers respectively (degree
constraint)

@ There are three papers with 4, 3 and 2 authors respectively. (dimension constraint)

Generate a hypergraph conforming to these constraints.
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o Correctness.
o Can generate all possible conforming hypergraphs.

© Application:

Degree sequence
@5 —
Dimension ///
We devise an Importance Sampling estimator for estimating population mean
of some property of the conforming hypergraphs.
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Give me a hypergraph: Deterministic Construction.

Input: A Labelled degree sequence and a dimension sequence
Output: A conforming hypergraph (parallel-edges allowed)
The main ideas:

o Construct edges starting from those with the largest to the smallest
dimensions.

o Edge construction: Assign vertices with the largest residual degrees.
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Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.

Requirement: All conforming hypergraphs should be possible to generate.

Hy =
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(Peter, Alice, Bob),
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Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.
Requirement: All conforming hypergraphs should be possible to generate.

Hy={ Hy ={ Hy = {
{Peter, Alice, Bob, John}, {Peter, Alice, Bob, John}, {Peter, Alice, Bob, John},
{Peter, Alice, Bob}, {Peter, Bob, John}, {Peter, Alice, John},
{Peter, John}}

{Peter, Alice}} {Peter, Bob}}

The main idea:

o Construct edges starting from those with the largest to the smallest
dimensions.

o Edge construction: At each iteration,

o Divide the columns with non-zero degrees into blocks of intervals.
o Determine the number of vertices to select from each block.
o Select the required # of vertices from each block uniformly at random.
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Random Edge construction

Suppose, the algorithm already constructed edge e; = {Peter, Alice, Bob, John}.

Residual dim. sequence: (3,2).
Residual deg. sequence: (2,1,1,1)

Constructing e;:
o Construct conjugate of the residual dimension sequence (ignoring first
component):
o Conjugate of (_,2) = (#integers >= 1, #integers >= 2,..) = (1,1,0,0).
o Construct its prefix sums : (1,2,2,2) (Say, (8))
o Construct prefix sums of the residual degree sequence: (2,3,4,5) (Say, («))
e Compute (a) — (8) : (1,1,2,3)
o At least 1,1,2 and 3 vertices need to be selected from the first column, first
2 columns, first 3 columns and first 4 columns resp. (Dominance conditions.)

@ Divide the columns into
disjoint blocks such that the
dominance conditions are
satisfied.

select 2 vertices

select 1 vertex




Application: Property estimation

Suppose, we are interested in some property f : H,, — R of the conforming
hypergraphs of a degree sequence (a), and dimension sequence (b)n,

Degree sequence H! = (E,l,El
(@n Random H? = {E},

Generation

En}
Dimension N Algorithm HYS= (EINI EQ’: e Ew’v‘{
sequence (b)),

|#Hp | = number of conforming
hypergraphs

P(H") = Probability of generating
hypergraph H'

Importance sampling Estimator of E[f].

e Good:

o The probabilities can be computed during random generation.
o i is an unbiased estimator of E[f] *

e Bad: || is often unknown.

' (Proof: Extended paper arXiv:2004.05429)



Application: Property estimation

A practical solution: Normalise the weights in the summation.

Degree sequence H'= {Ell Ezl: Erln}
@ Random H? = {(E},E3,..,EL}
Generation

Dimension Algorithm
sequence (b),

Self-Normalised Importance Sampling (SNIS) Estimator for E[f].

HY = (Y EY,... En

We use fi to estimate population mean E(f).
f =average clustering coefficient of the graph of the conforming hypergraphs.



Experimental Results

Datasets:
Datasets |Degree seq.| | |Dimension seq.|
G1 6 9
G 15 27
Gs3 42 81
Gs 123 243
Gs 366 719
Ge 1095 2187
Enron 4423 15653
Congress _bills | 1718 260851

Competing Algorithm. MCMC (Philip S. Chodrow, 2019, arXiv )
@ Start with an initial conforming hypergraph.
@ For T iterations,

e select a pair of random edges
o Exchange vertices to produce new edge-pairs with some prob.



Effectiveness Comparison
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Figure 2: Effective sample sizes of SNIS and MCMC algorithms on different datasets. Higher effective
sample size indicates better quality of samples.

o ESS represents the number of i.i.d samples which have the same accuracy as
the Monte Carlo estimates (e.g. SNIS, MCMC estimates)

@ SNIS estimates equates to more i.i.d sample than MCMC estimates in most
of the datasets.



Efficiency Comparison
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Figure 3: CPU-time (in second, log-scale) to generate 500 hypergraphs for Gy-Ge, 100 hypergraphs for
Enron and 20 hypergraphs for congress-bills datasets.

o Efficiency of the random generation algorithm is an issue.
@ Silver lining: It is often easier to parallelize a direct generation algorithm
than an Markov chain based generation algorithm.
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@ We propose an algorithm that constructs a hypergraph with a prescribed
degree and dimension sequence.

@ We propose an algorithm that generates a random hypergraph with a
prescribed degree and dimension sequence.

@ We propose an SNIS estimator to estimate hypergraph properties and use it
to empirically evaluate the effectiveness of random generation.

o SNIS estimator has higher effective sample sizes compared to the MCMC
estimator. *

o Issue: Efficiency of the random generation.
o Future work: Random generation in parallel is underway.
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Supplementary slide

-
e

107!

Estimate of p(CC)

] ] e CC (actual)

1 Mmome
T snis
G G (€8 Gy Gs G Enron congress-bills
Datasets

Figure 4: Average clustering coefficients (in log-scale) of the projected random hypergraphs of different
datasets and corresponding estimates p(CC) using SNIS and MCMC algorithms.

SNIS estimates are more accurate and stable than the MCMC estimates.
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Gale-Rysers criteria:

An incidence matrix with column-sum (a), and row-sum (b),, exists if and only if
(a), is dominated by the conjugate of (b),

Example

Is there any conforming hypergraph with degrees (3,2,2,2) and dimensions
(4,3,2)?

o Conjugate of (4,3,2) = (#components > 1, #components >

2, #components > 3,...) = (3,3,2,1)

@ Dominance check:
Is a1 < by ? 1 (3<3) —yes
Is a1 + ap < by + by?: (3+2<3+3)7? —yes
Isai+a>+as <bi+bo+bs?: (3+24+2<3+3+2)? >yes
Is
a1t+artaztas==bi+by+b3+b?:(34+2+2+2==34+34+2+1)7? 'yes |




Supplementary slide

Any (a)n, Any (a)n,
B)m =(2,...,2) (b)m = (k,..., k) | Any (a), and (b)m
(graph) (k-uniform hyp.) (hyp.)
Erdos-Gallai:
> aj even
and
Yk,
Sy a < k(k—1)+
Simple Yo iq Min(ai, k) Unknown Unknown
Gale-Ryser:
Hakimi: Billington: Ylai=) b
> aj even > ai=km and
and and vk,
Parallel-edge allowed | a1 < a2+ ...+ an Vi, ai<m Zf.‘zl ai < Z,—k:1 b}

Table 1: Results on necessary and sufficient conditions for sequences to be realisable as graphs and
hypergraphs. Degree sequence is (a) and dimension sequence (b).




