Construction and Random Generation of Hypergraphs with Prescribed Degree and Dimension Sequences

Naheed Anjum Arafat¹, Debabrota Basu², Laurent Decreusefond³, Stéphane Bressan¹

¹National University of Singapore ²Chalmers University of Technology, Sweden ³LTCI, Télécom Paris, France.

November 25, 2020

<ロト (四) (注) (注) (注) (注) (注)

Hypergraphs

- Data with dyadic relations: Graph (Vertices, Edges)
- Data with poly-adic relations: Hypergraph (Vertices, hyperedges)

Figure 1: A hypergraph representing a paper co-authored by {John,Alice,Peter}

<ロト <回ト < 注ト < 注ト = 注

Hypergraphs

- Data with dyadic relations: Graph (Vertices, Edges)
- Data with poly-adic relations: Hypergraph (Vertices, hyperedges)

Figure 1: A hypergraph representing a paper co-authored by {John,Alice,Peter}

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- **Degree**: deg(Alice) = 1
- **Dimension**: dim({*John*, *Alice*, *Peter*}) = 3

Generating hypergraphs with a prescribed degree and dimension constraints.

- Peter, Alice, Bob and John wrote 3 , 2, 2 and 2 papers respectively (degree constraint)
- There are three papers with 4, 3 and 2 authors respectively. (dimension constraint)

Generate a hypergraph conforming to these constraints.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

• An algorithm to construct a conforming hypergraph.

Correctness.

• An algorithm to construct a conforming hypergraph.

- Correctness.
- **a** An algorithm to construct a **random** conforming hypergraph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- Correctness.
- Can generate all possible conforming hypergraphs.

• An algorithm to construct a conforming hypergraph.

- Correctness.
- 3 An algorithm to construct a **random** conforming hypergraph.
 - Correctness.
 - Can generate all possible conforming hypergraphs.

Application:

We devise an Importance Sampling estimator for estimating population mean of some property of the conforming hypergraphs.

Give me a hypergraph: Deterministic Construction.

Input: A Labelled degree sequence and a dimension sequence **Output:** A conforming hypergraph (parallel-edges allowed)

Give me a hypergraph: Deterministic Construction.

Input: A Labelled degree sequence and a dimension sequence **Output:** A conforming hypergraph (parallel-edges allowed) **The main ideas:**

• Construct edges starting from those with the largest to the smallest dimensions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Give me a hypergraph: Deterministic Construction.

Input: A Labelled degree sequence and a dimension sequence **Output:** A conforming hypergraph (parallel-edges allowed) **The main ideas:**

- Construct edges starting from those with the largest to the smallest dimensions.
- Edge construction: Assign vertices with the largest residual degrees.

Steps of our proposed algorithm.

Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.

Requirement: All conforming hypergraphs should be possible to generate.

	Peter (3)	Alice (2)	Bob (2)	John (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1	1	1	
e ₃ (2)	1			1

	Peter (3)	Alice (2)	Bob (2)	John (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1		1	1
e ₃ (2)	1	1		

	Peter (3)	Alice (2)	Bob (2)	John (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1	1		1
e ₃ (2)	1		1	

 $\begin{array}{l} H_1 = \{ \\ \{ Peter, Alice, Bob, John \}, \\ \{ Peter, Alice, Bob \}, \\ \{ Peter, John \} \} \end{array}$

H₂ = { {Peter, Alice, Bob, John}, {Peter, Bob, John}, {Peter, Alice}}

 $\begin{array}{l} H_3 = \{\\ \{Peter, Alice, Bob, John\},\\ \{Peter, Alice, John\},\\ \{Peter, Bob\}\} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.

Requirement: All conforming hypergraphs should be possible to generate.

	Peter (3)	Alice (2)	Bob (2)	Johr (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1	1	1	
e ₃ (2)	1			1

	Peter (3)	Alice (2)	Bob (2)	John (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1		1	1
e ₃ (2)	1	1		

	Peter (3)	Alice (2)	Bob (2)	John (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1	1		1
e ₃ (2)	1		1	

 $\begin{array}{l} H_1 = \{ \\ \{ Peter, Alice, Bob, John \}, \\ \{ Peter, Alice, Bob \}, \\ \{ Peter, John \} \} \end{array}$

 $H_2 = \{$ {Peter, Alice, Bob, John}, {Peter, Bob, John}, {Peter, Alice}}

H₃ = { {Peter, Alice, Bob, John}, {Peter, Alice, John}, {Peter, Bob}}

イロト イヨト イヨト イヨト

The main idea:

• Construct edges starting from those with the largest to the smallest dimensions.

Give me a random hypergraph: Random Generation

Generate a random conforming hypergraph.

Requirement: All conforming hypergraphs should be possible to generate.

	Peter (3)	Alice (2)	Bob (2)	Johr (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1	1	1	
e ₃ (2)	1			1

	Peter (3)	Alice (2)	Bob (2)	John (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1		1	1
e ₃ (2)	1	1		

	Peter (3)	Alice (2)	Bob (2)	John (2)
e ₁ (4)	1	1	1	1
e ₂ (3)	1	1		1
e ₃ (2)	1		1	

 $H_2 = \{$ {Peter, Alice, Bob, John}, {Peter, Bob, John}, {Peter, Alice}}

The main idea:

- Construct edges starting from those with the largest to the smallest dimensions.
- Edge construction: At each iteration,
 - Divide the columns with non-zero degrees into blocks of intervals.
 - Determine the number of vertices to select from each block.
 - Select the required # of vertices from each block uniformly at random.

Suppose, the algorithm already constructed edge $e_1 = \{Peter, Alice, Bob, John\}$.

Residual dim. sequence: (3, 2). Residual deg. sequence: (2, 1, 1, 1)

	Peter (2)	Alice (1)	Bob (1)	
e ₁ (4)	1	1	1	1
(3)				
e ₃ (2)				

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

Suppose, the algorithm already constructed edge $e_1 = \{Peter, Alice, Bob, John\}$.

Residual dim. sequence: (3,2). Residual deg. sequence: (2,1,1,1)

《曰》 《聞》 《臣》 《臣》 三臣 …

- Construct conjugate of the residual dimension sequence (ignoring first component):
 - Conjugate of (, 2) = (#integers >= 1, #integers >= 2, ..) = (1, 1, 0, 0).

Suppose, the algorithm already constructed edge $e_1 = \{Peter, Alice, Bob, John\}$.

Residual dim. sequence: (3,2). Residual deg. sequence: (2,1,1,1)

	Peter (2)	Alice (1)	Bob (1)	John (1)
e ₁ (4)	1	1	1	1
e ₂ (3)				
e ₃ (2)				

《曰》 《聞》 《臣》 《臣》 三臣

- Construct conjugate of the residual dimension sequence (ignoring first component):
 - Conjugate of $(_,2) = (\#integers >= 1, \#integers >= 2, ..) = (1,1,0,0).$
 - Construct its prefix sums : (1,2,2,2) (Say, (β))

Suppose, the algorithm already constructed edge $e_1 = \{Peter, Alice, Bob, John\}$.

Residual dim. sequence: (3,2). Residual deg. sequence: (2,1,1,1)

	Peter (2)	Alice (1)	Bob (1)	John (1)
e ₁ (4)	1	1	1	1
e ₂ (3)				
e ₃ (2)				

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- Construct conjugate of the residual dimension sequence (ignoring first component):
 - Conjugate of $(_,2) = (\#integers >= 1, \#integers >= 2, ..) = (1,1,0,0).$
 - Construct its prefix sums : (1,2,2,2) (Say, (β))
- Construct prefix sums of the residual degree sequence: (2,3,4,5) (Say, (α))

Suppose, the algorithm already constructed edge $e_1 = \{Peter, Alice, Bob, John\}$.

Residual dim. sequence: (3, 2). Residual deg. sequence: (2, 1, 1, 1)

	Peter (2)	Alice (1)	Bob (1)	John (1)
e ₁ (4)	1	1	1	1
e ₂ (3)				
e ₃ (2)				

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- Construct conjugate of the residual dimension sequence (ignoring first component):
 - Conjugate of $(_,2) = (\#integers >= 1, \#integers >= 2, ..) = (1,1,0,0).$
 - Construct its prefix sums : (1,2,2,2) (Say, (β))
- Construct prefix sums of the residual degree sequence: (2, 3, 4, 5) (Say, (α))
- Compute $(\alpha) (\beta) : (1, 1, 2, 3)$

Suppose, the algorithm already constructed edge $e_1 = \{Peter, Alice, Bob, John\}$.

Residual dim. sequence: (3, 2). Residual deg. sequence: (2, 1, 1, 1)

	Peter (2)	Alice (1)	Bob (1)	John (1)	
e ₁ (4)	1	1	1	1	
e ₂ (3)					
e ₃ (2)					

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- Construct conjugate of the residual dimension sequence (ignoring first component):
 - Conjugate of $(_,2) = (\#integers >= 1, \#integers >= 2, ..) = (1,1,0,0).$
 - Construct its prefix sums : (1,2,2,2) (Say, (β))
- Construct prefix sums of the residual degree sequence: (2,3,4,5) (Say, (α))
- Compute $(\alpha) (\beta) : (1, 1, 2, 3)$
 - At least 1,1,2 and 3 vertices need to be selected from the first column, first 2 columns, first 3 columns and first 4 columns resp. (Dominance conditions.)

Suppose, the algorithm already constructed edge $e_1 = \{Peter, Alice, Bob, John\}$.

Residual dim. sequence: (3, 2). Residual deg. sequence: (2, 1, 1, 1)

	Peter (2)	Alice (1)	Bob (1)	John (1)
e ₁ (4)	1	1	1	1
e ₂ (3)				
e ₃ (2)				

- Construct conjugate of the residual dimension sequence (ignoring first component):
 - Conjugate of $(_,2) = (\#integers >= 1, \#integers >= 2, ..) = (1,1,0,0).$
 - Construct its prefix sums : (1,2,2,2) (Say, (β))
- Construct prefix sums of the residual degree sequence: (2,3,4,5) (Say, (α))
- Compute $(\alpha) (\beta) : (1, 1, 2, 3)$
 - At least 1,1,2 and 3 vertices need to be selected from the first column, first 2 columns, first 3 columns and first 4 columns resp. (Dominance conditions.)
- Divide the columns into disjoint blocks such that the dominance conditions are satisfied.

Suppose, we are interested in some property $f : \mathcal{H}_{ab} \to \mathbb{R}$ of the conforming hypergraphs of a degree sequence $(a)_n$ and dimension sequence $(b)_m$

Importance sampling Estimator of E[f].

Good:

- The probabilities can be computed during random generation.
- $\hat{\mu}$ is an unbiased estimator of $E[f]^{-1}$
- **Bad**: $|\mathcal{H}_{ab}|$ is often unknown.

A practical solution: Normalise the weights in the summation.

Self-Normalised Importance Sampling (SNIS) Estimator for E[f].

We use $\tilde{\mu}$ to estimate population mean E(f). $f = average \ clustering \ coefficient \ of \ the \ graph \ of \ the \ conforming \ hypergraphs.$

Datasets:

Datasets	Degree seq.	Dimension seq.
G ₁	6	9
G ₂	15	27
G ₃	42	81
G4	123	243
G ₅	366	719
G ₆	1095	2187
Enron	4423	15653
Congress_bills	1718	260851

Competing Algorithm. MCMC (Philip S. Chodrow, 2019, arXiv)

- Start with an initial conforming hypergraph.
- For T iterations,
 - select a pair of random edges
 - Exchange vertices to produce new edge-pairs with some prob.

《曰》 《聞》 《臣》 《臣》 三臣

Effectiveness Comparison

Figure 2: Effective sample sizes of SNIS and MCMC algorithms on different datasets. Higher effective sample size indicates better quality of samples.

- ESS represents the number of i.i.d samples which have the same accuracy as the Monte Carlo estimates (e.g. SNIS, MCMC estimates)
- SNIS estimates equates to more i.i.d sample than MCMC estimates in most of the datasets.

Efficiency Comparison

Figure 3: CPU-time (in second, log-scale) to generate 500 hypergraphs for G_1 - G_6 , 100 hypergraphs for Enron and 20 hypergraphs for congress-bills datasets.

- Efficiency of the random generation algorithm is an issue.
- **Silver lining:** It is often easier to parallelize a direct generation algorithm than an Markov chain based generation algorithm.

<ロト (四) (三) (三) (三) (三)

- We propose an algorithm that constructs a hypergraph with a prescribed degree and dimension sequence.
- We propose an algorithm that generates a random hypergraph with a prescribed degree and dimension sequence.
- We propose an SNIS estimator to estimate hypergraph properties and use it to empirically evaluate the effectiveness of random generation.
 - SNIS estimator has higher effective sample sizes compared to the MCMC estimator.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- We propose an algorithm that constructs a hypergraph with a prescribed degree and dimension sequence.
- We propose an algorithm that generates a random hypergraph with a prescribed degree and dimension sequence.
- We propose an SNIS estimator to estimate hypergraph properties and use it to empirically evaluate the effectiveness of random generation.
 - $\bullet\,$ SNIS estimator has higher effective sample sizes compared to the MCMC estimator. '

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Issue: Efficiency of the random generation.
 - Future work: Random generation in parallel is underway.

Q&A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Supplementary slide

Figure 4: Average clustering coefficients (in log-scale) of the projected random hypergraphs of different datasets and corresponding estimates $\mu(CC)$ using SNIS and MCMC algorithms.

イロト イヨト イヨト イヨト

SNIS estimates are more accurate and stable than the MCMC estimates.

Gale-Rysers criteria:

An incidence matrix with column-sum $(a)_n$ and row-sum $(b)_m$ exists if and only if $(a)_n$ is dominated by the conjugate of $(b)_m$

Example:

Is there any conforming hypergraph with degrees (3, 2, 2, 2) and dimensions (4, 3, 2)?

- Conjugate of $(4,3,2) = (\#components \ge 1, \#components \ge 2, \#components \ge 3, ...) = (3,3,2,1)$
- Dominance check:

• Is
$$a_1 \le \bar{b}_1$$
?: $(3 \le 3) \rightarrow yes$
• Is $a_1 + a_2 \le \bar{b}_1 + \bar{b}_2$?: $(3 + 2 \le 3 + 3)$? $\rightarrow yes$
• Is $a_1 + a_2 + a_3 \le \bar{b}_1 + \bar{b}_2 + \bar{b}_3$?: $(3 + 2 + 2 \le 3 + 3 + 2)$? $\rightarrow yes$
• Is
 $a_1 + a_2 + a_3 + a_4 == \bar{b}_1 + \bar{b}_2 + \bar{b}_3 + \bar{b}_4$?: $(3 + 2 + 2 + 2) == 3 + 3 + 2 + 1$)?:yes

Supplementary slide

	Any (<i>a</i>) _n ,	Any (<i>a</i>) _n ,	
	$(b)_m = (2,\ldots,2)$	$(b)_m = (k, \ldots, k)$	Any $(a)_n$ and $(b)_m$
	(graph)	(<i>k</i> -uniform hyp.)	(hyp.)
	Erdös-Gallai:		
	$\sum a_i$ even		
	and		
	$\forall k$,		
	$\sum_{i=1}^k a_i \leq k(k-1) +$		
Simple	$\sum_{i=k+1}^{n} \min(a_i, k)$	Unknown	Unknown
			Gale-Ryser:
	Hakimi:	Billington:	$\sum a_i = \sum b_i$
	$\sum a_i$ even	$\sum a_i = km$	and
	and	and	$\forall k,$
Parallel-edge allowed	$a_1 \leq a_2 + \ldots + a_n$	$\forall i, a_i \leq m$	$\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} b_i^*$

Table 1: Results on necessary and sufficient conditions for sequences to be realisable as graphs and hypergraphs. Degree sequence is (a) and dimension sequence (b).