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Abstract. Computation of persistent homology of simplicial represen-
tations such as the Rips and the Cěch complexes do not efficiently scale
to large point clouds. It is, therefore, meaningful to devise approximate
representations and evaluate the trade-off between their efficiency and
effectiveness. The lazy witness complex economically defines such a rep-
resentation using only a few selected points, called landmarks.
Topological data analysis traditionally considers a point cloud in a Eu-
clidean space. In many situations, however, data is available in the form
of a weighted graph. A graph along with the geodesic distance defines
a metric space. This metric space of a graph is amenable to topological
data analysis.
We discuss the computation of persistent homologies on a weighted
graph. We present a lazy witness complex approach leveraging the notion
of ε-net that we adapt to weighted graphs and their geodesic distance
to select landmarks. We show that the value of the ε parameter of the
ε-net provides control on the trade-off between choice and number of
landmarks and the quality of the approximate simplicial representation.
We present three algorithms for constructing an ε-net of a graph. We
comparatively and empirically evaluate the efficiency and effectiveness
of the choice of landmarks that they induce for the topological data
analysis of different real-world graphs.

1 Introduction

Topological data analysis (TDA) [5,24] involves computation of topological
features of datasets, such as persistent homology classes, and the representation
of these topological features using such topological descriptors as persistence bar-
codes [13]. In this section, we elaborate the computational blocks of topological
data analysis as shown in Figure 1.

Simplicial Complex. Topological data analysis computes the topological
features of a dataset, such as persistent homology classes, by computing the topo-
logical objects called simplicial complex. A simplicial complex is constructed
using simplices. Formally, a k-simplex is the convex-hull of (k + 1) data points.
For instance, a 0-simplex [v0] is a single point, a 1-simplex [v0v1] is an edge, and a
2-simplex [v0v1v2] is a filled triangle. A k-homology class is an equivalent class
of such k-simplicial complexes that cannot be reduced to a lower dimensional
simplicial complex [13].
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Fig. 1: Components of topological data analysis.

In order to compute the k-homology classes, a practitioner does not have
direct access to the underlying space of the point cloud and it is combinatori-
ally hard to compute the exact simplicial representation of Čech complex [31].
Thus different approximations of the exact simplicial representation are pro-
posed: Vietoris-Rips complex [29] and lazy witness complex [10].

Approximate Simplicial Representations. The Vietoris-Rips com-
plex Rα(D), for a given dataset D and real number α > 0, is an abstract simpli-
cial complex representation consisting of such k-simplices, where any two points
u, v in any of these k-simplices are at distance at most α. Vietoris-Rips com-
plex is the best possible (

√
2-)approximation of the Čech complex, computable

with present computational resources, and is extensively used in topological data
analysis literature [24]. Thus, we use the Vietoris-Rips complex as the baseline
representation in this paper. In the worst case, the number of simplices in the
Vietoris-Rips complex grows exponentially with the number of data points [31].

Lazy witness complex [10] approximates the Vietoris-Rips complex by con-
structing the simplicial complexes over a subset of data points L, referred to as
the landmarks. Formally, given a positive integer ν and a real number α > 0,
the lazy witness complex LWα(D,L, ν) of a dataset D is a simplicial complex
over a landmark set L where for any two points vi, vj of a k-simplex [v0v1 · · · vk],
there is a point w whose (dν(w)+α)-neighbourhood contains vi, vj . d

ν(w) is the
geodesic distance from point w ∈ L to its ν-th nearest point in the landmark set
L. In the worst case, the size of the lazy witness complexes grows exponentially
with the number of landmarks. Less number of landmarks facilitates computa-
tional acceleration while produces a bad approximation of Vietoris-Rips with
loss of topological features. Thus, the trade-off between the approximation of
topological features and available computational resources dictates the choice of
landmarks. We provide a quantification on such loss of topological features that
was absent in the literature.

Filtration and Representation of Topological Features. As the value
of filtration parameter α increases, new simplices arrive and the topological fea-
tures, i.e. the homology classes, start to appear. Some of the homology classes
merge with the existing classes in a subsequent simplicial complex, and some of
them persist indefinitely [13]. In order to capture the evolution of topological
structure with scale, topological data analysis techniques construct a sequence
of simplicial complex representations, called a filtration [13], for an increasing
sequence of α’s. In a given filtration, the persistence interval of a homology
class is denoted by [αb, αd), where αb and αd are the filtration values of its ap-
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pearance and merging respectively. The persistence interval of an indefinitely
persisting homology class is denoted as [αb,∞). Topological descriptors, such
as barcodes [9], persistence diagram [13], and persistence landscapes [4], repre-
sent persistence intervals in order to draw qualitative and quantitative inference
about the topological features. Distance measures between persistent diagrams
such as the q-Wasserstein and Bottleneck distance [13] are often used to draw
quantitative inference.

Graph Topological Data Analysis. Topological data analysis (TDA) [5]
traditionally considers a point cloud in a Euclidean space. In many situations,
however, data is available in the form of a weighted graph. Conveniently, the
vertices of the graph with the geodesic distance define a metric space. This met-
ric space is amenable to topological data analysis. This fact does not depend
on whether the graph is embeddable in a Euclidean space or not. Though the
metric space induced by a graph provides a different structure than point clouds
to investigate, this metric space bears the similar issues of scalable construction
of representations as well as similar approximate representations, filtrations, and
topological descriptors. This motivated us to exploit the generalisability of topo-
logical data analysis and to extend the ε-net induced lazy witness complexes [1]
to graphs.

Our Contributions. We investigate the computation of persistent homolo-
gies on a weighted graph. In Section 3, we present a lazy witness complex ap-
proach leveraging the notion of ε-net that we adapt to weighted graphs and their
geodesic distance to select landmarks. We show that the ε parameter of the ε-net
gives a control on the trade-off between choice and number of landmarks and
the quality of the approximate simplicial representation.

In Section 3.2, we prove that an ε-net is an ε-approximate representation
of the point cloud with respect to the Hausdorff distance. We prove that the
lazy witness complex induced by an ε-net, as a choice of landmarks, is a 3-
approximation of the induced Vietoris-Rips complex.

In Section 4, we present three algorithms, namely Greedy-ε-net, Iterative-ε-
net, and SPTpruning-ε-net, for constructing an ε-net of a graph. In Section 5,
we comparatively and empirically evaluate the efficiency and effectiveness of the
choice of landmarks that they induce for the topological data analysis of several
real-world graphs.

In Section 6, we summarise the findings and the future directions of research
that ε-net opens up for graph topological data analysis.

2 Related Works

Graph TDA. Existing applications of TDA to graphs focus on characterizing
networks using features computed from persistence homology classes. [7] and
[25] computed persistence homology at dimension 0, 1, and 2 of the clique fil-
tration to study weighted collaboration networks (size ∼36000) and weighted
networks from different domains (size ∼54000) respectively. In biology domain,
[12] clustered gene co-expression networks (size ∼400) based on distances be-
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tween Vietoris-Rips persistence diagram computed on each network. [21] studied
Vietoris-Rips filtration of the functional brain networks computed on ∼100 re-
gion of interests (points) in human brains with different clinical disorders. They
focus on homology classes at dimension 0 and 1. A related line of work regarding
the topology on graphs involves graphs derived as a representation of point-cloud
data (e.g. the neighbourhood graph) and their usage in data clustering [8] and
inference of global topology from local information [28].

Approximate Simplicial Complexes. Computational infeasibility of con-
structing the Čech complex and Vietoris-Rips complex motivates the develop-
ment of approximate simplicial representations such as the lazy witness com-
plexes, sparse-Rips complex [26] and graph induced complex (GIC) [11].

Applications of ε-net. The concept of ε-net is a standard concept in anal-
ysis and topology [18] originating from the idea of (δ, ε)-limits formulated by
Cauchy. ε-net are sets in a metric space that covers the whole space and are
well-separated. Nets have been used in nearest-neighbour search [20]. [15] used
ε-net for manifold reconstruction. Graph induced complex [11] uses the cliques
in the neighbourhood graph to construct simplcial complex over an ε-net.

[17] proposed net-tree data structure to represent ε-nets at all scales of ε. Net-
tree is used to construct approximate well-separated pair decompositions [17] and
approximate geometric spanners [17]. Sparse-Rips filtration [26] constructs a net-
tree on the point-cloud to decide which neighbouring points to delete. Contrary
to Sheehy [26], we use ε-net to select a fixed subset of points, called landmarks,
and compute persistent homology using them.

3 ε-net of Graphs: Definition and Analysis

[1] proposes the ε-net induced lazy witness complex for a point cloud embedded
in a Euclidean space for efficient computation of topological data analysis. In
practice, the datasets may not be represented as a point cloud in a Euclidean
space. The data may have different representations and non-Euclidean geometry.
For instance, the dataset with contextual and relational structure is often repre-
sented using graphs. In a graphical representation of data, the vertices represent
the data objects, edges represent relations among the data objects, and weights
on the edges quantify the amplitude of the relation with respect to others.

In this paper, we study both weighted and unweighted simple graphs. Since
unweighted graphs are a special case of weighted graph, we construct the defi-
nitions for weighted simple graphs. A weighted simple graph [3] G(V,E,W ) is a
graph with a vertex set V , an edge set E, a weight functionW : V ×V → R+, and
does not contain any self-edge or multiple edge. The geodesic distance dG(u, v)
between a pair u, v of vertices in a graph is defined as the length of the shortest
path between u and v, where the path length is defined as the sum of weights
of the edges connecting the vertices u and v [23]. In this paper we treat a graph
G = (V,E,W ) as a set V endowed with the canonical metric dG : V ×V → R+.
Thus, a weighted simple graph G transforms into a metric space (V, dG).
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As we substitute the points in the point cloud with the vertices of the graph
and the Euclidean distance between points with the geodesic distance between
the vertices, we adapt the components of topological data analysis for simple
weighted graphs.

ε-cover is a construction used in topology to compute inherent properties of a
given space [18]. In this paper, we import the concept of ε-cover to define ε-net of
a graph. We use the ε-net of a graph as landmarks for constructing lazy witness
complex on that graph.

We show that ε-net, as a choice of landmarks, has guarantees such as being
an ε-approximate representation of the graph, its induced lazy witness complex
being a 3-approximation of the corresponding Vietoris-Rips complex, and also
bounding the number of landmarks for a given ε. These guarantees are absent for
the other existing landmark selection algorithms such as random and maxmin
algorithms [27].

3.1 Defining ε-net of a Graph

In this paper, we consider a graph G = (V,E,W ) as a finite metric space (V, dG).
Since there are many graphs that are neither Euclidean nor they have Euclidean
embedding, we extend the definitions of neighbourhood and cover from point-set
topology as follows before defining ε-net.

Definition 1 (ε-neighbourhood). The ε-neighbourhood Nε(u) of a vertex u ∈
V is a subset of the vertex set V such that for any vertex v ∈ Nε(u) the distance
dG(u, v) ≤ ε.

The notion of ε-cover for graph generalises the geometric notion of cover using
the set-theoretic notion of ε-neighbourhood in Definition 1.

Definition 2 (ε-cover). An ε-cover of G is the finite collection {Nε/2(ui)} of
ε/2-neighbourhoods of vertices in G such that ∪iN ε

2
(ui) = V .

By triangle inequality, any set in the ε-cover has the property that two vertices
u, v in the cover have geodesic distance dG(u, v) ≤ ε. We differentiate an ε-
cover from the set of vertices whose ε

2 -neighbourhood determines that cover by
defining ε-sample.

Definition 3 (ε-sample). A set L = {u1, u2, . . . , u|L|} ⊆ V is an ε-sample of
graph G if the collection {Nε(ui) : ui ∈ L} of ε-neighbourhoods covers G i.e.
∪iNε(ui) = V .

ε-neighbourhoods may intersect, which is not an intended property if we want
to decrease the size of the ε-sample. We combine the notion of ε-cover with the
notion of ε-sparsity to define ε-net.

Definition 4 (ε-sparse). A set L = {u1, u2, . . . , u|L|} ⊂ V is ε-sparse if for
any distinct ui, uj ∈ L, dG(ui, uj) > ε in graph G.
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An ε-net of graph G is such a subset of V which is both an ε-sample of G and
ε-sparse. The ε-net while considered as the landmark set L induces a metric
subspace (L, dL) of the metric space of the graph of (V, dG), where dL is the
metric induced on set L by the geodesic metric dG.

Definition 5 (ε-net). A subset L ⊂ V is an ε-net of G if L is ε-sparse and an
ε-sample of G.

Relating ε-net and Other Graph Theoretic Concepts. The definition of
ε-net on graphs generalises the notion of independent set and dominating set
for undirected graphs [3]. Any 1-net of an undirected graph G = (V,E) is an
independent set of G and vice versa. Any minimal cardinality 1-net of G is a
dominating set of G, and vice versa.

3.2 Analysing Properties of ε-net of a Graph

ε-net of a simple, weighted, connected graph comes with approximation guar-
antees irrespective of its algorithmic construction. In this section, we provide
following three analysis of ε-net:

1. An ε-net of a connected graph is an ε-approximation of its set of vertices in
Hausdorff distance.

2. The lazy witness complex induced by an ε-net is a 3-approximation of the
Vietoris-Rips complex induced by the same set.

3. For a graph of diameter∆, there exists an ε-net of of size at most (∆ε )O(log
|V |
ε ).

Graph Approximation Guarantee of an ε-net. We use Lemma 1 to prove
that the ε-net of a graph G = (V,E,W ) is an ε-approximation of V in Hausdorff
metric (Theorem 1). Lemma 1 follows from the ε-sample property of an ε-net.

Lemma 1. Let L be an ε-net of graph G. For any vertex v ∈ V , there exists a
point u ∈ L ⊆ V such that the geodesic distance dG(u, v) ≤ ε

Proof. Since V = ∪u∈LNε(u), for any vertex v ∈ V there exists an u ∈ L such
that v ∈ Nε(u). As v ∈ Nε(u), by definition of ε-neighbourhood, the length of
the shortest path from v to u is at most ε, i.e. dG(u, v) ≤ ε.

Theorem 1. The Hausdorff distance between (V, dG) and its ε-net induced sub-
space (L, dL) is at most ε.

Proof. For any u ∈ L ⊆ V , there exists a vertex v ∈ V such that dG(u, v) ≤ ε,
by definition of ε-neighbourhood. Hence, maxL minV dG(u, v) ≤ ε. By Lemma 1,
maxV minL dG(u, v) ≤ ε. Since the Hausdorff distance dH(V,L) is defined as the
maximum of maxL minV dG(u, v) and maxV minL dG(u, v), therefore dH(V,L) is
upper bounded by ε.
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Topological Approximation Guarantee of an ε-net induced Lazy wit-
ness complex on graphs. In addition to an ε-net being an ε-approximation
of the space (V, dG), we prove that the lazy witness complex induced by the
ε-net, as landmarks, is a good approximation (Theorem 2) to the Vietoris-Rips
complex on the same set of vertices. This approximation ratio is independent
of the algorithm constructing the ε-net. As a step towards Theorem 2, we state
Lemma 2. Lemma 2 is implied by the definition of the lazy witness complex
and ε-sample. Lemma 2 establishes the relation between 1-nearest neighbour of
points in an ε-net.

Lemma 2. If L is an ε-net of (V, dG), the distance dG(u, v) from any vertex
u ∈ L to its 1-nearest neighbour v ∈ V is at most ε.

Theorem 2 shows that a lazy witness complex induced by an ε-net landmarks
is a 3-approximation of the Vietoris-Rips complex on the landmarks beyond a
certain value of the filtration parameter.

Theorem 2. If L is an ε-net of the point cloud V for ε ∈ R+, LWα(V,L, ν = 1)
is the lazy witness complex of L at filtration value α, and Rα(L) is the Vietoris-
Rips complex of L at filtration α, Rα/3(L) ⊆ LWα(V,L, 1) ⊆ R3α(L) for α ≥ 2ε.

Proof. In order to prove the first inclusion, consider a k-simplex σk = [x0 · · ·xk]
∈ Rα/3(L). For any edge [xixj ] ∈ σk, let wt be the point in V that is nearest
to the vertices of [xixj ]. Without loss of generality, let that vertex be xj . Since
wt is the nearest neighbour of xj , by Lemma 2, dG(wt, xj) ≤ ε ≤ α

2 . Since
[xixj ] ∈ Rα/3, dG(xi, xj) ≤ α

3 <
α
2 . By triangle inequality, dG(wt, xi) ≤ α

2 + α
2 ≤

α. Hence, xi is within distance α from wt. The α-neighbourhood of point wt
contains both xi and xj . Since d1(wt) > 0, the (d1(wt) + α)-neighbourhood of
wt also contains xi, xj . Therefore, [xixj ] is an edge in LWα(V,L, 1). Since the
argument is true for any xi, xj ∈ σk, the k-simplex σk ∈ LWα(V,L, 1).

In order to prove the second inclusion, consider a k-simplex σk = [x0x1 · · ·xk]
∈ LWα(V,L, 1). Therefore, by definition of lazy witness complex, for any edge
[xixj ] of σk there is a witness w ∈ V such that, the (d1(w) + α)-neighbourhood
of w contains both xi and xj . Hence, dG(w, xi) ≤ d1(w) +α ≤ ε+α (by Lemma
2)≤ 3α/2. Similarly, dG(w, xj) ≤ 3α/2. By triangle inequality, dG(xi, xj) ≤ 3α.
Therefore, [xixj ] is an edge in R3α(L). Since the argument is true for any xi, xj ∈
σk, the k-simplex σk ∈ R3α(L).

Discussion. Theorem 2 implies that the interleaving of lazy witness filtra-
tion LW = LWα(L) and the Vietoris-Rips filtration R = Rα(L) occurs when
α > 2ε. As a consequence, their corresponding partial persistence diagrams
Dgm>2ε(LW ) and Dgm>2ε(R) are 3 log 3-approximations of each other in log-
scale, by the persistence approximation lemma [26]. In Section 5, we empirically
validate this bound for the lazy witness complex induced by the ε-net landmarks.

Size of an ε-net. We prove an upper bound on the size of an ε-net of a
connected unweighted graph using the doubling dimension.
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The doubling dimension [16] of a metric space M = (X, d) is the smallest
positive number D such that any ε-neighbourhood in M can be covered by 2D

number of ε
2 -neighbourhoods. A metric space is called doubling if its doubling

dimension is bounded. The space (V, dG) is a doubling metric space.

Gupta et. al. [16] showed that the doubling dimension D(G) of an unweighted
connected graph G is related to its local density. The local density of an un-
weighted connected graph G, denoted β(G), is the smallest value β such that
|Nε(v)| ≤ βε, for all v ∈ V and ε ∈ N. To be precise the doubling dimension
D(G) ≤ 4 log(2β(G)) [16]. We use this result along with the following lemma to
prove bound on the size of an epsilon-net of an unweighted graph in Theorem 3.

Lemma 3. For any connected unweighted graph G of diameter ∆ and doubling
dimension D(G), there exists an ε-net of size at most (∆ε )D(G) where ∆ ≥ ε ≥ 1

Proof. Let ∆ be the diameter of an unweighted graph G of doubling dimen-
sion D(G). Thus, V (a ∆-neighbourhood) can be covered by 2D(G) number of
∆/2-neighbourhoods. Each ∆/2-neighbourhood can be covered by 2D(G) num-
ber of ∆/4-neighbourhoods. Thus V can be covered by 22D(G) number of ∆/4-
neighbourhoods. Repeating this log2(∆ε )-times, we get that V can be covered by

2D(G) log2(
∆
ε ) number of ε-neighbourhoods. Each of the ε-neighbourhoods contain

at most one ε-net-landmark. Hence, there exists an ε-net of size (∆ε )D(G) for any
connected, unweighted graph G.

Theorem 3. For any connected unweighted graph G = (V,E) of diameter ∆,

there exists an ε-net of size at most (∆ε )O(log(
|V |
ε ))

Proof. In a connected unweighted graph G, the size |Nε(v)| of ε-neighbourhood
of a vertex v is greater than ε for ∆ ≥ ε ≥ 1. Thus, local density β(G) > 1.

We observe that maxv|Nε(v)| < |V |. Thus, β(G) = maxv,ε
|Nε(v)|

ε is at most
|V |
ε . Applying the result from Gupta et.al. [16], the doubling dimension D(G) ≤

4 log( |V |
ε ). The rest follows from Lemma 3.

4 Algorithms for Computing ε-Net

In this section, we propose and elaborate three algorithms, namely Greedy-ε-Net,
Iterative-ε-Net, and SPTprunning-ε-net, for computing ε-net on graphs.

4.1 Greedy-ε-Net Algorithm

We propose a greedy algorithm, namely Greedy-ε-Net, to compute a minimal-
cardinality ε-net of a graph. Greedy-ε-Net (Algorithm 1) maintains a hash table
with vertices as keys and the number of vertices in their ε-cover as values. At
each step, Greedy-ε-Net selects a vertex with the largest ε-cover, marks the
covered vertices, and updates the ε-cover of other vertices until all the vertices
are marked as covered.
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Algorithm 1 Greedy-ε-Net

Input: Graph G = (V,E,W ), parameter ε
Output: Set of Landmarks L
1: Initialize L = φ
2: Let nc be the hash table with vertices as keys, number of vertices in their ε-cover

as value.
3: for all u ∈ V do
4: nc[u] = ε-BFS(G, u, ε)
5: end for
6: Initialize all vertex u ∈ V as marked.
7: repeat
8: Sort nc in descending order of its value.
9: if marked[u] = False then

10: L.insert(u)
11: for all vertex u′ in u’s ε-cover do
12: Mark u′ as True.
13: Delete key u′ from nc.
14: for all v ∈ V do
15: if u′ is in ε-cover of v then
16: Decrease nc[v] by 1.
17: end if
18: end for
19: end for
20: end if
21: Delete key u from nc.
22: until all vertices are marked

Algorithm 2 ε-BFS

Input: Graph G = (V,E,W ), vertex u, parameter ε.
Output: Set of vertices in u’s ε-cover, Cε
1: Initialize Queue Q = {u}
2: initialize Cε = φ
3: while Q 6= φ do
4: v = DEQUEUE(Q)
5: v.marked = True
6: for all v′ ∈ G.Adj[v] do
7: if v′.marked = False then
8: v′.d = v.d+W [v, v′]
9: if v′.d ≤ ε then

10: Cε = Cε ∪ {v′}
11: end if
12: end if
13: end for
14: end while

4.2 Iterative-ε-Net Algorithm
Iterative-ε-Net (Algorithm 3) is a diffusive algorithm that maintains a set C(ε,2ε)

that contains the set of unmarked vertices that are within a ring of (ε, 2ε] distance
from the current set of landmarks. We call them the ring vertices. Iterative-
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Algorithm 3 Iterative-ε-Net

Input: Graph G = (V,E,W ), parameter ε
Output: Set of landmarks L
1: Initialise L = φ
2: i = 1
3: Select initial landmark li = u uniformly at random from V .
4: L = L ∪ {u}
5: Let Cu(ε,2ε) be the set of unmarked vertices v such that ε < dG(u, v) ≤ 2ε.
6: Let Cu2ε be the set of vertices v such that dG(u, v) > 2ε and are the closest.
7: repeat
8: Cuε,2ε = PartialBFS(G, li, C

u
(ε,2ε), C

u
2ε)

9: if Cu2ε is empty then
10: select li+1 uniformly at random from Cu(ε,2ε).
11: else
12: select li+1 uniformly at random from Cu2ε.
13: end if
14: L = L ∪ {li+1}.
15: i = i+ 1
16: u = li+1

17: until all vertices are marked

ε-Net also maintains another set C2ε that contains the set of unmarked vertices
that are at distance at least 2ε but are adjacent to the bordering vertices of the
cover. We call them the enveloping vertices.

Iterative-ε-net, at each iteration, uniformly at random selects a vertex u
from the current set of enveloping vertices as next landmark, and run Partial-
BFS (Algorithm 4) starting at u to mark the vertices in its ε-cover, as well as to
update the enveloping and ring vertex sets. If enveloping vertex set is empty it
selects a ring vertex uniformly at random as next landmark.

Iterative ε-net algorithm has the property that some vertex in the ε-cover of
landmark li+1 is always adjacent to some vertex in the ε-cover of landmark li.
Thus the two covers are adjacent as sets.

4.3 Sparsity based Pruning Algorithm on Shortest Path Tree

We propose SPTpruning-ε-Net algorithm (Algorithm 5) that constructs a short-
est path tree of the graph and uses the tree to compute an ε-net. Algorithm 5
computes a shortest path tree rooted at a vertex chosen uniformly at random.
The algorithm uses ε-BFS (Algorithm 2) to construct a preliminary BFS span-
ning tree of the graph (line 2). Then the algorithm constructs an ε-net of the
BFS-tree (line 4-28). It does so by traversing the tree level-order starting from
root, running ε-BFS in the tree to mark covered vertices, and add the set of
unmarked vertices at level ε+ 1 as candidates for landmarks.

An ε-net LSPT of a BFS-tree SPT (G) of a graph G has the property that,
any vertex v ∈ SPT (G) ⊂ G that is covered by some vertex u ∈ LSPT , is also
covered by the u ∈ V in the graph as well. This property follows from the fact
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Algorithm 4 PartialBFS

Input: Graph G, vertex u, set Cu(ε,2ε), set Cu2ε.
1: Initialise Queue Q = {u}
2: u.marked = True
3: while Q 6= φ do
4: v = DEQUEUE(Q)
5: for all v′ ∈ G.Adj[v] do
6: if v′.marked = False then
7: v′.d = v.d+W [v, v′]
8: if v′.d ≤ ε then
9: v′.marked = True

10: Remove v′ from Cu(ε,2ε) and Cu2ε if exists.
11: ENQUEUE(Q, v′)
12: else if ε < v′.d ≤ 2ε then
13: Cu(ε,2ε) = Cu(ε,2ε) ∪ {v′}
14: ENQUEUE(Q, v′)
15: else
16: Cu2ε = Cu2ε ∪ {v′}
17: end if
18: end if
19: end for
20: end while

that, the distance between any vertex pair dG(u, v) in the graph can only be
shorter than their distance dSPT (u, v) in the BFS-tree.

Unless one of the vertex is a root, the distance between any pair of vertices
in the tree is not guaranteed to be the shortest in the graph. Thus an ε-net
of a BFS-tree does not have ε-sparsity in the graph containing the BFS-tree
as a subgraph. As a remedy, Algorithm 6 prunes vertices from the candidate
landmarks that are covered by other candidate landmark.

5 Performance Analysis
In this section, we experimentally and comparatively analyse the performance
of the three proposed algorithms to compute an ε-net of graphs. We discuss
the effectiveness and efficiency of the algorithms and also validate that the ε-
net computed by any of these algorithms satisfy being 3-approximation of the
Vietoris-Rips complex.

5.1 Datasets

We evaluate the performance of our algorithms using two real-world datasets.
The dataset Power [30] is an unweighted graph of US Power-grid (4941 vertices,
6594 edges, diameter 46). Celegans [2] is a weighted graph of Celegans worm’s
frontal neural network (297 vertices, 2148 edges, diameter 1.333).
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Algorithm 5 SPTpruning-ε-net

Input: Graph G, Diameter ∆, parameter ε
Output: Set of landmarks C
1: Select a vertex u uniformly at random from V .
2: Run ε-BFS(G,u,∆) to construct a BFS spanning tree rooted at u
3: Let SPT be the tree.
4: Initialise Queue Q = {u}
5: u.marked = True
6: Let ε-net of the SPT Cε = φ
7: repeat
8: while Q 6= φ do
9: u′ = DEQUEUE(Q)

10: u’.marked = True
11: u′.d = 0
12: Initialise Queue Q′ = {u′}
13: while Q′ 6= φ do
14: v = DEQUEUE(Q′)
15: for all v′ ∈ SPT.Adj[v] do
16: if v′.marked = False then
17: v′.d = v.d+W [v, v′]
18: if v′.d ≤ ε then
19: v′.marked = True
20: ENQUEUE(Q′, v′)
21: else
22: Cε = Cε ∪ {v′}
23: ENQUEUE(Q, v′)
24: end if
25: end if
26: end for
27: end while
28: end while
29: until All vertex in SPT are marked
30: C = Prune(G,Cε,ε)

Algorithm 6 Prune

Input: Graph G, A set of landmarks Cε, parameter ε
Output: Set of landmarks C
1: C = Cε
2: for all vertex v ∈ Cε do
3: if v.marked = False then
4: Run ε-BFS(G,v,ε)
5: else
6: C = C \ {v}
7: end if
8: end for
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Fig. 2: Performance of the algorithms on Celegans dataset.
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Fig. 3: Performance of the algorithms on Power dataset.

5.2 Experimental Setup

We implement the experimental workflow in C++. We use Snap library [22]
for graph processing and ε-net computations. We modify the Ripser3 library
to compute lazy witness complexes and their persistent intervals. We use R-
TDA package [14] to compute bottleneck distances. All experiments are run
on a machine with an Intel(R) Xeon(R)@2.20GHz CPU and 80 GB memory
limit. We set the lazy witness parameter ν = 1 in all computations. We set the
maximum value of the filtration parameter to the diameter of the corresponding
dataset. We compute persistent intervals at dimension 0 and 1.

5.3 Efficiency and Effectiveness

We measure the efficiency of our algorithms in terms of CPU time (in ms)
required to select ε-net landmarks for a given ε, and the overall computation of
persistent homology of each graph. The overall total computation time includes
the time an algorithm spends constructing ε-net and time spent on computing
persistent intervals at dimension 0 and 1. We measure the effectiveness of the

3 https://github.com/Ripser/ripser

https://github.com/Ripser/ripser
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Fig. 4: Validation of the approximation guarantee of the ε-net induced lazy wit-
ness complexes for Celegans dataset. The bottlneck distance between the partial
persistence diagram of the corresponding Vietoris-Rips and lazy witness filtra-
tions is less than 3 log 3 in both dimensions 0 and 1.

algorithms using the number of landmarks they select by corresponding ε-net
construction.

Figures 2 and 3 illustrate the experimental results for the Celegans and the
Power dataset respectively. We observe that the number of landmarks selected
by all the algorithms decrease as the ε-increases. The landmark selection time
of the Greedy-ε-Net increases as the ε increases independent of the dataset.
For other two algorithms, the landmark selection time varies depending on the
density of the graph. The landmark computation time of Iterative-ε-net and
SPTpruning-ε-net are almost invariant with ε.

We observe that Iterative-ε-Net takes longer time (> 10 ms) to select land-
marks compared to the SPTpruning-ε-Net algorithm but it selects less number of
landmarks than SPTpruning-ε-Net algorithm. Thus, the overall runtime of lazy
witness complex construction using Iterative-ε-Net is smaller than that of the
SPTpruning-ε-Net. The empirical performance analysis instantiates Iterative-ε-
Net as the practical and efficient choice to construct ε-net induced lazy witness
complex for graphs.
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5.4 Validating the Approximation Guarantee

In order to validate the approximation guarantee in Theorem 2, we construct
the Vietoris-Rips complex and lazy witness complexes using ε-nets for different
values of ε and different algorithms. We compare the corresponding complexes by
computing bottleneck distances between the persistence diagrams at dimension
0 and 1. We retain only the partial diagram with points in the diagram born
after 2ε for this purpose. Figure 4 validates the guarantee on Celegans dataset.
We omit the validation on Power dataset for the sake of brevity.

6 Conclusion and Future Work

We investigate the computation of persistent homologies on weighted graphs.
We extend the notion of ε-net for point clouds to weighted graphs. We further
propose an ε-net induced lazy witness complex that leverages the ε-net and their
geodesic distances to select landmarks.

We prove that an ε-net of a connected graph is an ε-approximation of its set
of vertices in Hausdorff distance. We also prove that the lazy witness complex
induced by an ε-net is a 3-approximation of the Vietoris-Rips complex induced
by the same set. We prove the existence of an ε-net (of a graph) of size at most

(∆ε )O(log
|V |
ε ), where ∆ is the diameter of the graph.

We present three algorithms for constructing an ε-net of a graph. We com-
paratively and empirically evaluate the efficiency and effectiveness of the choice
of landmarks that they induce for the topological data analysis of several real
world graphs. The empirical performance analysis instantiates Iterative-ε-Net as
the practical and efficient choice to construct ε-net induced lazy witness complex
for graphs.

An interesting future work would be to leverage the notion of ε-net induced
lazy witness complex for faster and scalable computation of machine learning
problems, such as clustering [8], deep learning [19], kernel density estimation [6],
for both graphs and point clouds.

Acknowledgement

This work is partially supported by the National University of Singapore Insti-
tute for Data Science project WATCHA and by Singapore Ministry of Education
project Janus.

References
1. Arafat, N.A., Basu, D., Bressan, S.: Topological data analysis with ε-net induced

lazy witness complex. arXiv preprint arXiv:1906.06122 (2019)

2. Badhwar, R., Bagler, G.: Control of neuronal network in caenorhabditis elegans.
PloS one 10(9), e0139204 (2015)

3. Berge, C.: Graphs and hypergraphs. North-Holland, New York (1976)

4. Bubenik, P.: Statistical topological data analysis using persistence landscapes. The
Journal of Machine Learning Research 16(1), 77–102 (2015)

5. Carlsson, G.: Topology and data. Bulletin of The American Mathematical Society,
Vol. 46(2), pp. 255-308 (2009)



16 Naheed Anjum Arafat, Debabrota Basu, Stéphane Bressan
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