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Technology, Göteborg, Sweden

Abstract. Topological data analysis computes and analyses topological
features of the point clouds by constructing and studying a simplicial
representation of the underlying topological structure. The enthusiasm
that followed the initial successes of topological data analysis was curbed
by the computational cost of constructing such simplicial representations.
The lazy witness complex is a computationally feasible approximation
of the underlying topological structure of a point cloud. It is built in
reference to a subset of points, called landmarks, rather than considering
all the points as in the Čech and Vietoris-Rips complexes. The choice and
the number of landmarks dictate the effectiveness and efficiency of the
approximation.
We adopt the notion of ε-cover to define ε-net. We prove that ε-net, as
a choice of landmarks, is an ε-approximate representation of the point
cloud and the induced lazy witness complex is a 3-approximation of
the induced Vietoris-Rips complex. Furthermore, we propose three al-
gorithms to construct ε-net landmarks. We establish the relationship of
these algorithms with the existing landmark selection algorithms. We
empirically validate our theoretical claims. We empirically and compar-
atively evaluate the effectiveness, efficiency, and stability of the proposed
algorithms on synthetic and real datasets.

1 Introduction

Topological data analysis computes and analyses topological features of gener-
ally high-dimensional and possibly noisy data sets. Topological data analysis
is applied to eclectic domains namely shape analysis [6], images [2,22], sensor
network analysis [8], social network analysis [3,25,27,24], computational neuro-
science [21], and protein structure study [30,19].

The enthusiasm that followed the initial successes of topological data anal-
ysis was curbed by the computational challenges posed by the construction of
an exact simplicial representation, the Čech complex, of the point cloud. A sim-
plicial representation facilitates computation of basic topological objects such
as simplicial complexes, filtrations, and persistent homologies. Thus, researchers
devised approximations of the Čech complex as well as its best possible approxi-
mation the Vietoris-Rips complex [7,26,10]. One of such computationally feasible
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approximate simplicial representation is the lazy witness complex [7]. The lazy
witness complex is built in reference to a subset of points, called landmarks. The
choice and the number of landmarks dictate the effectiveness and efficiency of
the approximation.

We adopt the notion of ε-cover [18] from analysis to define and present the
notions of ε-sample, ε-sparsity, and ε-net (Section 4) to capture bounds on the
loss of topological features induced by the choice of landmarks. We prove that
an ε-net is an ε-approximate representation of the point cloud with respect to
the Hausdorff distance. We prove that the lazy witness complex induced by an
ε-net, as a choice of landmarks, is a 3-approximation of the induced Vietoris-
Rips complex. ε-net allows us to provide such approximation guarantees for lazy
witness complex (Section 4.2) which was absent in the literature. Furthermore,
we propose three algorithms to construct ε-net as landmarks for point clouds
(Section 5). We establish their relationship with the existing landmark selection
algorithms, namely random and maxmin [7]. We empirically and comparatively
show that the size of the ε-net landmarks constructed by the algorithms varies
inversely with ε and agrees with the known bound on the size of ε-net [20].

We empirically and comparatively validate our claim on the topological ap-
proximation quality of the lazy witness complex induced by the ε-net landmarks
(Section 6). Furthermore, we empirically and comparatively validate the effec-
tiveness, efficiency and stability of the proposed algorithm on representative
synthetic point clouds as well as a real dataset. Experiments confirm our claims
by showing equivalent effectiveness of the algorithms constructing ε-net land-
marks with the existing maxmin algorithm. We also show the ε-net landmarks
to be more stable than those selected by the algorithms maxmin and random
as ε-net incurs narrower confidence band in the persistent landscape topological
descriptor. We conclude (Section 7) with the theoretical and experimental pieces
of evidence that validate the ε-nets constructed as a stable and effective way to
construct landmarks and to induce lazy witness complexes.

2 Related Works

Applications of TDA. TDA is applied in different domains mostly on relatively
small datasets and up to dimension 2 due to computational intractability of the
popular Čech and Vietoris-Rips complexes. [6] computed homology classes at di-
mension 0 for their proposed tangential filtration of point clouds of handwritten
digits for image classification (dataset size ∼69–294). [28] used the persistence
pairs at dimension 0 for segmenting mesh on benchmark mesh segmentation
datasets (size ∼50000). Researchers applying TDA to network analysis focus
on characterising networks using features computed from persistence homology
classes. [3] and [25] computed persistence homology at dimension 0,1 and 2 of
the clique filtration to study weighted collaboration networks (size ∼36000) and
weighted networks from different domains (size ∼54000) respectively. In bio-
logical networks, [11] clustered gene co-expression networks (size ∼ 400) based
on distances between Vietoris-Rips persistence diagram computed on each net-
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Fig. 1: Components of topological data analysis.

work. In molecular biology, persistent homology reveals different conformations
of proteins [30,19] based on the strength of the bonds of the molecules.

Topological Approximation. Computational infeasibility of the Čech com-
plex and Vietoris-Rips complex motivates the development of approximate sim-
plicial representations such as the lazy witness complexes, sparse-Rips com-
plex [26] and graph induced complex (GIC) [10]. Sparse-Rips complex [26] per-
turbs the distance metric in such a way that when the regions covered by a
point can be covered by its neighbouring points, that point can be deleted with-
out changing the topology. Given a graph constructed on a point cloud as input,
the graph induced complex is a simplicial complex built on a subset of vertices,
where the vertices of a k-simplex are the nearest neighbours of a clique-vertices
of a k-clique [10]. Due to their computational benefits, lazy witness complex
and graph induced complexes have found applications in studying natural image
statistics [7] and image classification [9].

Applications of ε-net. The concept of ε-net is a standard concept in anal-
ysis and topology [18] originating from the idea of (δ, ε)-limits formulated by
Cauchy. Nets have been used in nearest-neighbor search [20]. [15] proposed the
Net-tree data structure to represent ε-nets at all scales of ε. Net-tree is used to
construct approximate well-separated pair decompositions [15] and approximate
geometric spanners [15]. The simplicial complexes in the graph induced complex
are nets. Sparse-Rips filtration constructs a net-tree on the point-cloud to decide
which neighbouring points to delete. [14] used ε-net for manifold reconstruction.

3 Topological Data Analysis

Topological data analysis is the study of computational models for efficient and
effective computation of topological features, such as persistent homology classes,
from different datasets, and representation of the topological features using dif-
ferent topological descriptors, such as persistence barcodes, for further analysis
and application [12,23]. In this section, we represent the computational blocks
of topological data analysis in Figure 1 and further describe each of the blocks.

Topological data analysis computes the topological features, such as per-
sistent homology classes, by computing the topological objects called simpli-
cial complex for a given dataset. A simplicial complex is constructed using
simplices. Formally, a k-simplex is the convex-hull of (k + 1) data points. For
instance, A 0-simplex [v0] is a single point, a 1-simplex [v0v1] an edge, and a
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2-simplex [v0v1v2] a filled triangle. A k-homology class is an equivalent class
of such k-simplicial complexes that cannot be reduced to a lower dimensional
simplicial complex [12]. In order to compute the k-homology classes, a practi-
tioner does not have direct access to the underlying space of the point cloud and
it is combinatorially hard to compute the exact simplicial representation of Čech
complex [31]. Thus, different approximations of the exact simplicial representa-
tion are proposed: Vietoris-Rips complex [17] and lazy witness complex [7].

The Vietoris-Rips complex Rα(D), for a given dataset D and real number
α > 0, is an abstract simplicial complex representation consisting of such k-
simplices, where any two points vi, vj in any of these k-simplices are at distance
at most α. Vietoris-Rips complex is the best possible (

√
2-)approximation of

the Čech complex, computable with present computational resources, and is
extensively used in topological data analysis literature [23]. Thus, we use the
Vietoris-Rips complex as the baseline representation in this paper. In the worst
case, the number of simplices in the Vietoris-Rips complex grows exponentially
with the number of data points [23,31]. Lazy witness complex [7] approximates
the Vietoris-Rips complex by constructing the simplicial complexes over a subset
of data points L, referred to as the landmarks.

Definition 1 (Lazy Witness Complex [7]). Given a positive integer ν and
real number α > 0, the lazy witness complex LWα(D,L, ν) of a dataset D
is a simplicial complex over a landmark set L where for any two points vi, vj
of a k-simplex [v0v1 · · · vk], there is a point w whose (dν(w) + α)-neighborhood3

contains vi, vj.

In the worst case, the size of the lazy witness complexes grows exponentially
with the number of landmarks. Less number of landmarks facilitates computa-
tional acceleration while produces a bad approximation of Vietoris-Rips with
loss of topological features. Thus, the trade-off between the approximation of
topological features and available computational resources dictates the choice of
landmarks.

As the value of filtration parameter α increases, new simplices arrive and
the topological features, i.e. the homology classes, start to appear. Some of the
homology classes merge with the existing classes in a subsequent simplicial com-
plex, and some of them persist indefinitely [12]. In order to capture the evolution
of topological structure with scale, topological data analysis techniques construct
a sequence of simplicial complex representations, called a filtration [12], for an
increasing sequence of α’s. In a given filtration, the persistence interval of a
homology class is denoted by [αb, αd), where αb and αd are the filtration val-
ues of its appearance and merging respectively. The persistence interval of an
indefinitely persisting homology class is denoted as [αb,∞).

Topological descriptors, such as persistence diagram [12] and persistence
landscapes [1] represent persistence intervals as points and functions respectively
in order to draw qualitative and quantitative inference about the topological fea-

3 dν(w) is the distance from point w ∈ D to its ν-th nearest point in L.
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tures. Distance measures between persistent diagrams such as the bottleneck and
Wasserstein distances [12] are often used to draw quantitative inference. The
bottleneck distance between two diagrams is the smallest distance d for which
there is a perfect matching between the points of the two diagrams such that any
pair of matched points are at distance at most d [12]. The Wasserstein distance
between two diagrams is the cost of the optimal matching between points of the
two diagrams [12].

4 ε-net

As we discussed in Section 3, topological data analysis of a dataset begins with
the computation of simplicial complex representations. Though Vietoris-Rips is
the best possible approximation of the Čech complex, it incurs an exponential
computational cost with respect to the size of the point cloud. Thus, lazy wit-
ness complex is often used as a practical solution for scalable topological data
analysis. Computation of lazy witness complex is dependent on the selection of
landmarks. Selection of landmarks dictates the trade-off between effectiveness,
i.e. the quality of approximation of topological features, and efficiency, i.e. the
computational cost of computing the lazy witness complex.

ε-cover is a construction used in topology to compute the inherent proper-
ties of a given space [18]. In this paper, we import the concept of ε-cover to
define ε-net of a point cloud. We use the ε-net of the point cloud as the land-
marks for constructing lazy witness complex. We show that ε-net, as a choice
of landmarks, has guarantees such as being an ε-approximate representation of
the point cloud, its induced lazy witness complex being a 3-approximation of its
induced Vietoris-Rips complex, and also bounding the number of landmarks for
a given ε. These guarantees are absent for the other existing landmark selection
algorithms (Section 5) such as random and maxmin algorithms.

4.1 ε-net of a Point Cloud

In this section, we define the ε-net of a point cloud in reference to the ε-cover
used in topology. ε-cover is a set of subsets of a point cloud in an Euclidean space
such that these subsets together cover the point cloud, but none of the subsets
has a diameter more than ε.

Definition 2 (ε-cover [18]). An ε-cover of a point cloud P is the set of Pi’s
such that Pi ⊆ P , P = ∪iPi, and diameter4 of Pi is at most ε ≥ 0 for all i.

When the sets in the 2ε-cover of P are Euclidean balls of radius ε, the set of
centres of the balls is termed as an ε-sample of set P .

Definition 3 (ε-sample [14]). A set L ⊆ P is an ε-sample of P if the collection
{Bε(x) : x ∈ L} of ε-balls of radius ε covers P , i.e. P = ∪x∈LBε(x).

4 The diameter diam(Pi) of a set Pi ⊆ P is defined as the largest distance d(x, y)
between any two points in x, y ∈ Pi.
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According to the definition of ε-sample, P is an ε-sample of itself for ε = 0. For
decreasing further computational expense, it is desirable to have an ε-sample is
sparse that means it contains as less number of points as possible. An ε-sparse
subset of P is a subset where any two points are at least ε apart from each other.

Definition 4 (ε-sparse). A set L ⊂ P is ε-sparse if for all x, y ∈ L, d(x, y) > ε.

An ε-net of set P is an ε-sparse subset of P which is also an ε-sample of P .

Definition 5 (ε-net [18]). Let (P, d) be a metric space and ε ≥ 0. A subset
L ⊂ P is called an ε-net of P if L is ε-sparse and an ε-sample of P .

4.2 Properties of ε-nets

ε-net of a point cloud comes with approximation guarantees irrespective of its
algorithmic construction. An ε-net of a point cloud of diameter ∆ in Euclidean
space RD is an ε-approximation of the point cloud in Hausdorff distance. The lazy
witness complex induced by an ε-net is a 3-approximation of the Vietoris-Rips
complex on that ε-net. Furthermore, the size of an ε-net is at most (∆ε )θ(D) [20].
Here, we establish the first two approximation guarantees of ε-net theoretically.
In section 6 we validate the last two properties empirically for the proposed
algorithms for constructing ε-nets.

Point-cloud Approximation Guarantee of an ε-net. We use Lemma 1
to prove that the ε-net of a point cloud P is an ε-approximate representation of
that point cloud in Hausdorff distance.

Lemma 1. Let L be an ε-net of point cloud P . For any point p ∈ P , there exists
a point q ∈ L such that the distance d(p, q) ≤ ε

Theorem 1. The Hausdorff distance between the point cloud P and its ε-net
L ⊆ P is at most ε.

Proof. For any l ∈ L, there exists a point p ∈ P such that d(l, p) ≤ ε, by defini-
tion of Bε(l). Hence, minl∈L d(l, p) ≤ ε, and thus, maxp∈P minl∈L d(l, v) ≤ ε. For
any p ∈ P , there exists a landmark l ∈ L such that d(l, p) ≤ ε, by Lemma 1. Thus,
maxl∈L minp∈P d(l, p) ≤ ε. Hence the Hausdorff distance dH(P,L) between P
and L, defined as the maximum of maxl∈L minp∈P d(l, p) and maxp∈P minl∈L d(l, p)
is bounded by ε.

Topological Approximation Guarantee of an ε-net Induced Lazy Wit-
ness Complex. In addition to an ε-net being an ε-approximation of the point-
cloud, we prove that the lazy witness complex induced by the ε-net landmarks
is a good approximation (Theorem 2) to the Vietoris-Rips complex on the land-
marks. This approximation ratio is independent of the algorithm constructing
the ε-net. As a step towards Theorem 2, we state Lemma 2 that follows from
the definition of the lazy witness complex and ε-sample. Lemma 2 establishes
the relation between 1-nearest neighbour of points in an ε-net.
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Lemma 2. If L is an ε-net landmark of point cloud P , then the distance d(p, p′)
from any point p ∈ P to its 1-nearest neighbour p′ ∈ P is at most ε.

Theorem 2 shows that the lazy witness complex induced by the landmarks in
an ε-net is a 3-approximation of the Vietoris-Rips complex on those landmarks
above the value 2ε of filtration parameter.

Theorem 2. If L is an ε-net of the point cloud P for ε ∈ R+, LWα(P,L, ν = 1)
is the lazy witness complex of L at filtration value α, and Rα(L) is the Vietoris-
Rips complex of L at filtration α, then Rα/3(L) ⊆ LWα(P,L, 1) ⊆ R3α(L) for
α ≥ 2ε.

Proof. In order to prove the first inclusion, consider a k-simplex σk = [x0x1 · · ·xk] ∈
Rα/3(L). For any edge [xixj ] ∈ σk, let wt be the point in P that is nearest to
the vertices of [xixj ] and wlog, let the point corresponding to that vertex be xj .
Since wt is the nearest neighbour of xj , by Lemma 2, d(wt, xj) ≤ ε ≤ α

2 . Since
[xixj ] ∈ Rα/3, d(xi, xj) ≤ α

3 <
α
2 . By triangle inequality, d(wt, xi) ≤ α

2 + α
2 ≤ α.

Hence, xi is within distance α from wt. The α-neighbourhood of point wt con-
tains both xi and xj . Since d1(wt) > 0, the (d1(wt)+α)-neighbourhood of wt also
contains xi, xj . Therefore, [xixj ] is an edge in LWα(P,L, 1). Since the argument
is true for any xi, xj ∈ σk, the k-simplex σk ∈ LWα(P,L, 1).

In order to prove the second inclusion, consider a k-simplex σk = [x0x1 · · ·xk] ∈
LWα(P,L, 1). Therefore, by definition of lazy witness complex, for any edge
[xixj ] of σk there is a witness w ∈ P such that, the (d1(w) + α)-neighbourhood
of w contains both xi and xj . Hence, d(w, xi) ≤ d1(w) + α ≤ ε+ α (by Lemma
2)≤ 3α/2. Similarly, d(w, xj) ≤ 3α/2. By triangle inequality, d(xi, xj) ≤ 3α.
Therefore, [xixj ] is an edge in R3α(L). Since the argument is true for any
xi, xj ∈ σk, the k-simplex σk ∈ R3α(L).

Discussion. Theorem 2 implies that the interleaving of lazy witness filtration
LW = LWα(L) and the Vietoris-Rips filtration R = Rα(L) occurs when α > 2ε.
As a consequence, the weak-stability theorem [4] implies that the bottleneck dis-
tance between the partial persistence diagrams Dgm>2ε(LW ) and Dgm>2ε(R)
is upper bounded by 3 log 3. In Section 6, we empirically validate this bound.

Size of an ε-net. The size of an ε-net depends on ε, the diameter of the point-
cloud and the dimension of the underlying space [20,15]. If a point cloud P ⊂ RD
has diameter ∆, the size of an ε-net of P is (∆ε )θ(D) [20]. The size of an ε-net does
not depend on the size of the point cloud. In Section 6, we empirically validate
this bound for the ε-net landmarks generated by the proposed algorithms. The
framework of ε-net along with its approximation guarantees lead to the question
of its algorithmic construction as landmarks.

5 Construction of an ε-net

The näıve algorithm [16] to construct an ε-net selects the first point l1 uniformly
at random. In i-th iteration, it marks the points at a distance less than ε from
the previously selected landmark li−1 as covered, and selects the new point
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li from the unmarked points arbitrarily until all points are marked [15]. The
fundamental principle is to choose, at each iteration, a new landmark from the
set of yet-to-cover points such that it retains the ε-net property. We propose
three algorithms where this choice determines the algorithm.

5.1 Three Algorithms: ε-net-rand, ε-net-maxmin, and (ε, 2ε)-net

The algorithm ε-net-rand, at each iteration, marks the points at a distance
less than ε from the previously chosen landmark as covered and chooses a new
landmark uniformly at random from the unmarked points. The algorithm ε-
net-maxmin, at each iteration, marks the points at a distance less than ε from
the previously chosen landmark as covered and chooses the farthest unmarked
point from the already chosen landmarks. It terminates when the distance to
the farthest unmarked point is no more than ε. The algorithm (ε, 2ε)-net, at
each iteration, marks the points at a distance less than ε from the previously
chosen landmark as covered, and chooses a landmark uniformly at random from
those unmarked points whose distance to the previously chosen landmark is at
most 2ε. If there are no unmarked points at a distance in-between ε and 2ε from
the previous landmark, it searches for unmarked points at a distance between
2ε and 4ε, 4ε and 8ε, and so on, until it either finds one to continue as before or
all points are marked. The pseudo-code for (ε, 2ε)-net is in Algorithm 1.

(ε, 2ε)-net attempts to cover the point-cloud with intersecting balls of radius
ε, whereas ε-net-maxmin attempts to cover the point-cloud with non-intersecting
balls of radius ε. ε-net-rand does not maintain any invariant.

ε-net-rand and (ε, 2ε)-net have the time-complexity ofO( 1
εD

) andO( 1
εD

log( 1
ε ))

respectively. Their run-time does not depend on the size of the input point cloud.
On the other hand, the run-time of ε-net-maxmin depends on the size of the
point-cloud as it has to search for the farthest point from the landmarks at each
iteration. On a point cloud of sinze n, ε-net-maxmin has O( n

εD
) time-complexity.

5.2 Connecting ε-net to Random and Maxmin algorithms

De Silva et al.[7] proposed random and maxmin algorithms for point clouds.

Random. Given a point cloud P , the algorithm random selects |L| points
uniformly at random from the set of points P . This algorithm is closely related
to ε-nets. Given the number of landmarks K > 1, the set of landmarks selected
by random is δ-sparse where δ is the minimum of the pairwise distances among
the landmarks. However, the same choice of K may not necessarily make the
landmarks a δ-sample of the point cloud.

The ε-net-rand algorithm is a modification of random that takes ε as a pa-
rameter instead of K and use ε to put a constraint on the domain of random
choices. It continues to select landmarks until all points are marked to ensure the
ε-sample property. The proof sketch of the fact that the constructed landmarks
are ε-sparse and ε-sample is as follows:
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Algorithm 1 Algorithm (ε, 2ε)-net

Input: Point cloud P = {p1, p2, · · · , pn}, n× n Distance matrix D, parameter ε.
Output: Set of Landmarks L.
1: Select the initial landmark l1 uniformly at random from P .
2: Initialize L = {l1}.
3: Let N1

(ε,2ε) be the set of points at a distance between ε and 2ε from l1.

4: Initialize candidate landmarks C1 = N1
(ε,2ε).

5: i = 1.
6: repeat
7: Let N i

≤ε be the set of points at a distance less than ε from li.
8: Mark all the points in N i

≤ε as covered.
9: Let Cui be the set of unmarked points in Ci.

10: if Cui is empty then
11: Find the first δ = [1, 2, · · · , log(d∆/2εe)] for which N i

(2δε,2δ+1ε) contains any
unmarked point.

12: Set Ci = Ci ∪N i
(2δε,2δ+1ε).

13: end if
14: Select li+1 uniformly at random from Cui .
15: Insert li+1 to L.
16: Ci+1 = Ci ∪N i+1

(ε,2ε).
17: i = i+ 1.
18: until all points are marked

Proof of Correctness. The ε-net-rand algorithm does not terminate until all
points are marked as covered. Hence the set of landmarks selected by ε-net-rand
is an ε-sample, since otherwise, there would have been unmarked points. The
pairwise distance between any two landmarks cannot be less than ε; otherwise,
one of them would have been marked by the other and the marked point would
not be a landmark. Hence the set landmarks selected by ε-net-rand is ε-sparse.

Maxmin. The maxmin algorithm selects the first landmark l1 uniformly at
random from the set of points, P . Following that; it selects the point which
is furthest to the present set of landmarks at each step till a given number of
landmarks, say |L|, are chosen. If Li−1 = {l1, l2, . . . , li−1} is the set of already
chosen landmarks, it selects such a point u ∈ P \ Li−1 as the ith landmark
that maximises the minimum distance from the present set of landmarks Li−1.
Mathematically, li , arg maxu∈P\Li−1

minv∈Li−1 d(u, v). The maxmin algorithm
selects landmarks such that the point cloud is covered as vastly as possible.

The maxmin algorithm is closely related to ε-net. Given the number of land-
marks K > 1, the set of landmarks selected by maxmin is δ-sparse where δ
is the minimum of the pairwise distances among the landmarks chosen. How-
ever, that choice of K may not necessarily make the landmarks a δ-sample of
the point cloud. The ε-net-maxmin algorithm is a modification of maxmin that
takes ε as a parameter instead of K and uses ε to control sparsity among the
landmarks. It terminates when the minimum of the pairwise distances among
the landmarks drops below ε to ensure the ε-sample property of the landmarks
chosen. The proof sketch of the resulting landmarks being ε-sparse and ε-sample
is as follows:
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Proof of Correctness. The ε-net-maxmin algorithm, at each iteration, selects
only that point as a landmark whose minimum distance to the other landmark
points is the largest among all unmarked points. If such a point’s minimum dis-
tance to the other landmark points is no more than ε, the algorithm terminates.
Hence the set of landmarks selected by ε-net-maxmin must be ε-sparse. A point
that is not a landmark must be covered by some landmark point already. Oth-
erwise, its minimum distance to the landmark set would have been at least ε,
and hence would have been the only unmarked point available to be selected as
a new landmark by ε-net-maxmin. Therefore the set of landmarks selected by
ε-net-maxmin is also ε-sample of the point cloud.

6 Empirical Performance Evaluation

We implement the pipeline illustrated in Figure 1 to empirically validate our
theoretical claims and also the effectiveness, efficiency, and stability of the al-
gorithms that construct ε-net landmarks compared to that of the random and
maxmin algorithms. We test and evaluate these algorithms on two synthetic
point cloud datasets, namely Torus and Tangled-torus, and a real-world point
cloud dataset, namely 1grm. On each input point cloud, we compute the lazy
witness filtration and Vietoris-Rips filtration induced by the landmarks, as well
as the Vietoris-Rips filtration induced by the point cloud.

On each dataset, as we vary parameter ε of the algorithms constructing ε-
nets, we study the relationship between ε to the number of landmarks, the quality
of the topological features approximated by the lazy witness filtration induced
by those landmarks, as well as the stability of those approximated features. As
the algorithms maxmin and random require the number of landmarks a priori,
for the sake of comparison, we use the same number of landmarks as that of the
corresponding ε-net algorithm for a given ε.

We compute the quality of the features approximated by an algorithm in
terms of the 1-Wasserstein distance between the lazy witness filtration induced
by the landmarks selected by that algorithm to those of a Vietoris-Rips filtration
on the same dataset. As there are elements of randomness in the algorithms, we
run each experiment 10 times and compute distances averaged over the runs.

We compute the stability of the features approximated by the algorithms in
terms of the 95% confidence band corresponding the rank 1 persistence landscape
using bootstrap [5]. We use persistence landscape to validate the stability of
the filtrations because unlike persistence diagrams and barcodes, two sets of
persistence landscapes always have unique mean and by strong law of large
numbers the empirical mean landscapes of sufficiently large collection converge
to its expected landscapes [1].

6.1 Datasets and Experimental Setup

Datasets. We use the datasets illustrated in Figure 2 for experimentation.
The dataset Torus is a point cloud of size 500 sampled uniformly at random
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Fig. 2: (left) Torus, (middle) Tangled-torus, and (right) 1grm Dataset

from the surface of a torus in R3. The torus has a major radius of 2.5 and minor
radius of 0.5. The dataset Tangled-torus is a point cloud of size 1000 sampled
uniformly at random from two tori tangled with each other in R3. Both tori
has a major radius of 2.5 and minor radius of 0.5. The dataset 1grm is the
conformation of the gramicidin-A protein. It has a helical shape. Gramicidin-A
has two disconnected chains of monomers consisting of 272 atoms.

Experimental Setup. We implement the experimental workflow in Matlab
2018a (with 80GB memory limit). All experiments are run on a machine with
an Intel(R) Xeon(R)@2.20GHz CPU and 196 GB memory. We use the Javaplex
library [29] to construct lazy witness filtrations and to compute their persistence
intervals. We use the Ripser library to construct the Vietoris-Rips filtrations
and to compute their persistence intervals. We use R-TDA package [13] to com-
pute bottleneck and Wasserstein distances, and 95% confidence band for the
landscapes. We set the lazy witness parameter ν = 1 in all computations.

6.2 Validation of Theoretical Claims

Number of Landmarks Generated by the ε-net Algorithms. In Figure 3,
we illustrate the relation between the number of landmarks generated by the
ε-net algorithms and ε on Torus dataset. Each algorithm is run 10 times for each
ε, and the mean and standard deviation are plotted. We observe that the number
of landmarks decreases as ε increases. We also observe that, for a fixed ε, the
average number of landmarks selected by the ε-net algorithms is more or less
stable across different algorithms. We use the number of landmarks of an ε-net-
maxmin to fit a curve with values ∆ = 5.9 (the diameter of Torus) and coefficient
θ(D) = 1.73 (found from fitting with 95% confidence). This observation supports
the theoretical bound of (∆ε )θ(D).

Topological Approximation Guarantee. In order to validate Theorem 2
on dataset Torus, we compute the bottleneck distance between the persistence
diagram of the lazy witness filtration and that of the Vietoris-Rips filtration
induced by the ε-net landmarks for different values of ε. For each ε and algorithm,
we generate 10 sets of ε-net landmarks, compute their corresponding persistence
diagrams and plot the mean and standard deviation of the bottleneck distances
in Figure 4. Since the theorem is valid for α ≥ 2ε, we exclude the homology
classes born below 2ε before the distance computation. The algorithms satisfy
the bound as the distances are always less than the theoretical bound of 3 log 3.
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Fig. 4: Topological approximation guar-
antee of ε-net constructed by the algo-
rithms on Torus dataset.

Since the plots on the other datasets support these claims, for the sake of brevity,
we omit them.

6.3 Effectiveness and Efficiency of Algorithms Constructing ε-nets

For each ε, we compute the 1-Wasserstein distance between the persistent dia-
grams of the lazy witness filtration induced by each ε-net landmarks and that of
the Vietoris-Rips filtration induced by the whole point cloud. We compute the
mean distance and mean CPU-times across 10 runs. Unlike ε-net algorithms, the
existing landmark selection algorithms take the number of landmarks as input.
Since the average number of landmarks selected by the ε-net algorithms does
not vary much across different algorithms (Figure 3), for each ε, we take the
same number of ε-net-maxmin landmarks as parameters to select the random
and maxmin landmarks. Figure 5 illustrates result on Torus dataset.

We observe that maxmin performs well in dimensions 0 and 2 whereas (ε, 2ε)-
net has competitive effectiveness. In dimension 1, we observe that ε-net-maxmin
achieves the lowest minimum, whereas random achieves the highest minimum.
All the ε-net algorithms has two local minima, the first of which at around ε = 0.5
and the second in between ε = 2 to ε = 4. The first local minimum is due to the
minor radius. As for the explanation of the second local minimum, it is sufficient
to either cover the inner diameter of 5 or the outer diameter of 6 to capture
the cycle. A 2.5- to 3-sparse sample suffices to do so. The performance of the
maxmin and random landmarks is not as explainable as the ε-net landmarks.
In terms of efficiency, we observe that that (ε, 2ε)-net algorithm has the lowest
run-time among all the ε-net algorithms. The (ε, 2ε)-net algorithm has competi-
tive effectiveness and better efficiency among the proposed algorithms. Figure 6
illustrates the results for 1grm dataset. We observe that (ε, 2ε)-net achieves the
smallest loss in dimensions 0 and 1. In dimension 2, maxmin achieves the small-
est loss. ε-net-rand takes the smallest CPU-time among all the ε-net algorithms.
We observe that the effectiveness of (ε, 2ε)-net and efficiency of ε-net-rand in the
results on Tangled-torus dataset. We omit the plots due to space limitation.
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(a) Effectiveness and Efficiency of the ε-net algorithms on Torus
dataset.
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Fig. 5: Torus dataset.
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(a) Effectiveness and Efficiency of the ε-net algorithms on 1grm dataset.
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(b) Effectiveness and Efficiency of the existing algorithms on 1grm dataset.

Fig. 6: 1grm dataset.
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Fig. 7: 95% confidence band of the rank one persistence landscape at dimension
1 of the lazy witness filtration induced by the landmark selection algorithms on
Tangled-torus dataset.

Despite providing better efficiency and equivalent effectiveness on the datasets
under study, the performance of the maxmin algorithm is less predictable and
less explainable than the ε-net algorithms. Among the ε-net algorithms, (ε, 2ε)-
net has better effectiveness at the expense of little loss in efficiency, whereas
ε-net-rand has better efficiency than the others with effectiveness comparable to
ε-net-maxmin.

6.4 Stability of the ε-net Landmarks

In Figure 7, we vary ε and plot the rank 1 persistence landscape at dimension 1
and its 95% confidence band corresponding to the lazy witness filtration induced
by the different landmark selection algorithms. For maxmin and random, we
take the same number of landmarks as that in the corresponding ε-net-maxmin
landmarks. The rank 1 persistent landscape is a functional representation of the
most persistent homology class, which we observe from Figure 7 in the form
of a peak for all the algorithms. The x-axis represents the value of filtration
parameter and y-axis represents function values. We observe that the ε-net-
maxmin has similar confidence bands as maxmin, whereas the confidence bands
of ε-net-rand and (ε, 2ε)-net are often narrower than both maxmin and random.
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Random has the widest confidence band among all. The confidence bands of
maxmin are in-between these two extremes. This observation implies that the ε-
net algorithms are more stable than the existing algorithms. We observe similar
stability results on other datasets that we omit due to space limitation.

7 Conclusion

We use the notion of ε-net to capture bounds on the loss of the topological
features of the induced lazy witness complex. We prove that ε-net is an ε-
approximation to the original point cloud and the lazy witness complex induced
by ε-net is a 3-approximation to the Vietoris-Rips complex on the landmarks
for values of filtration parameter beyond 2ε. Such quantification of approxima-
tion for lazy witness complex was absent in literature and is not derivable for
algorithms limiting the number of landmarks.

We propose three algorithms to construct ε-net landmarks. We show that the
proposed ε-net-rand and ε-net-maxmin algorithms are variants of the algorithm
random and maxmin respectively, which ensures the constructed landmarks to be
an ε-sample of the point cloud. We empirically and comparatively show that the
sizes of the landmarks that our algorithms construct agree with the bound on the
size of ε-net. We empirically validate our claim on the topological approximation
guarantee by showing that beyond 2ε filtration value, the bottleneck distances
are bounded by 3 log 3. Furthermore, we empirically and comparatively validate
the effectiveness, efficiency and stability of the proposed algorithms on repre-
sentative synthetic point clouds as well as a real dataset. Experiments confirm
our claims by showing equivalent effectiveness of the algorithms constructing
ε-net landmarks at the cost of a little decrease in efficiency but offering better
stability.
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