Neighborhood based hypergraph core decomposition

Naheed Anjum Arafat*, Arijit Khan⁺, Arpit Kumar Rai[#], Bishwamittra Ghosh^{\$}

*Nanyang Technological University (Singapore), +Aalborg University (Denmark), #IIT Kanpur (India), \$A*STAR (Singapore)

PVLDB 2023

- Proposed Algorithms
- 3 Experimental Results
- Applications.
- 5 Conclusion and Future works.

< (17) > < (17) > <

Hypergraph

A hypergraph (V, E) consists of a set of nodes V and a collection of subsets of nodes E called *hyperedges*. Unlike edges in a graph, hyperedge may contain more than 2 nodes. **Examples:** co-authorship in papers, event-participant relations in meet-ups, etc.

Neighbors

Pair of nodes that co-occur in a hyperedge are neighbours.

Figure 1: The set of events $H = \{T, R, P_1, P_2\}$ forms a hypergraph. Annie and Newton are neighbors. Newton has 6 neighbours.

3 / 20

Neighborhood-based core decomposition

Decomposition of a hypergraph into nested, maximal subhypergraphs/cores such that all nodes in the *k*-core have at least *k* neighbors in that subhypergraph. **Examples: 6-core** $=> \{T, R\}$, **7-core** $=> \{T\}$

Applications

Intervening propagation of contagions, finding influential nodes for viral marketing campaigns, densest subhypergraph extraction etc.

(left) Neighborhood-based and (right) degree-based core decomposition of a hypergraph ${\cal H}$

Limitations of existing methods.

Hypergraph Degree-based decomposition may not be informative

Reduced Hypergraph Reducing to Clique graph and bipartite graph and then applying graph core-decompositions produces non-intuitive results.

Figure 2: (left) Neighborhood-based and (right) degree-based core decomposition of a hypergraph H

Figure 3: Alternative decompositions (a) Core decomposition of clique graph of H and (b) Dist-2 core decomposition of the bipartite graph of H. **Non-intuitiveness:** Similar events (P_1 and P_2) in different cores.

• • • • • • • • • • • •

Peeling paradigm In the classic peeling algorithm for graph, a node removal reduces its neighbors' degree by 1 (Linear time algorithm). However, in a neighborhood-based hypergraph core decomposition, its neighboring nodes # neighbors may reduce by more than 1 (Polynomial time).

Local algorithm paradigm Graph *h*-index reports incorrect neighborhood-based core.

Figure 4: For any n > 1, the *h*-index of node *a* never reduces from $h_a^{(1)} = \mathcal{H}(2,3,3,4) = 3$ to its correct core-number 2. Because *a* will always have at least 3 neighbors (*c*, *d*, and *e*) whose *h*-indices are at least 3. An incorrect 3-core reported.

Proposed Algorithms

3 Experimental Results

Applications.

5 Conclusion and Future works.

NA Arafat, A Khan, B. Ghosh, AK Rai Neighborhood based hypergraph core decomposition PVLDB 2023

7 / 20

Naive Peeling algorithm: Peel

• At each iteration $k \in \{1, 2, \cdots, |V|\}$,

- **()** Remove the node with # neighbors $\leq k$.
- **2** Report *k* as the core-number of the removed node.
- 8 Recompute the #neighbors of neighboring nodes.
- Complexity: O(|V|.d_{nbr}.(d_{nbr} + d_{hpe}), here d_{nbr} (d_{hpe}) is the #neighbor (degree) of the node with largest #neighbors (degree).

Can we do better?.

Delay # neighbors recomputation of nodes with core-number > k based on lower-bound.

Node b's #neighbors is recomputed twice: (1) when x is peeled and later (2) when e is peeled. Can we delay the recomputation until e is peeled?

A (1) > A (2) > A (2)

Better Peeling algorithm: E-Peel

- Compute the core-number lower bound for all nodes.
- At each iteration $k \in \{1, 2, \cdots, |V|\}$,
 - **1** Remove the node with # neighbors $\leq k$.
 - Report k as the core-number of the removed node.
 - Recompute the #neighbors of a neighboring node v only if $k \ge LB(v)$.

$$LB(v) = \max\left(|e_m(v)| - 1, \min_{u \in V} |N(u)|\right)$$

Here $e_m(v)$ is the maximal cardinality hyperedge containing v

Node b's #neighbors computation is delayed until e is peeled.

Best algorithm: Local core and optimisations

Input: Hypergraph
$$H = (V, E)$$

Output: Core-number $c(v)$ for each node $v \in V$
for all $v \in V$ do
 $\hat{h}_v^{(0)} = h_v^{(0)} \leftarrow |N(v)|$.
for all $v = 1, 2, \dots, \infty$ do
for all $v \in V$ do
 $h_v^{(n)} \leftarrow \min \left(\mathcal{H}(\{\hat{h}_u^{(n-1)} : u \in N(v)\}), \hat{h}_v^{(n-1)}\right)$
for all $v \in V$ do
 $c(v) \leftarrow \hat{h}_v^{(n)} \leftarrow \text{Core-correction } (v, h_v^{(n)}, H)$
if $\forall v, \hat{h}_v^{(n)} = h_v^{(n)}$ then
Terminate Loop

Core correction:

Reduce h-index h_a by 1 until the #neighbors of a in $H^+(a) \ge h_a$: Node a's corrected h-index = 2.

Return c

Hypergraph *h*-index of order *n*

The Hypergraph *h*-index of order *n* for node *v*, denoted as $\hat{h}_v^{(n)}$, is defined for any natural number $n \in \mathbb{N}$ by the following recurrence relation:

$$\hat{h}_{v}^{(n)} = \begin{cases} |N(v)| & n = 0 \\ h_{v}^{(n)} & n > 0 \land LCCSAT(h_{v}^{(n)}) \\ \max\{k \mid k < h_{v}^{(n)} \land LCCSAT(k)\} & n > 0 \land \neg LCCSAT(h_{v}^{(n)})(\text{Core-correction}) \end{cases}$$
(1)

Hypergraph h-index has a limit

For any node $v \in V$ of a hypergraph H = (V, E), the two sequences $(h_v^{(n)})$ and $(\hat{h}_v^{(n)})$ have the same limit: $\lim_{n\to\infty} h_v^{(n)} = \lim_{n\to\infty} \hat{h}_v^{(n)}$.

The limiting value is the core-number

If the local coreness-constraint is satisfied for all nodes $v \in V$ at the terminal iteration, the corrected *h*-index at the terminal iteration $\hat{h}_v^{(\infty)}$ satisfies: $\hat{h}_v^{(\infty)} = c(v)$.

Convergence time guarantee

Given a node $v \in N_i$ in a hypergraph H, it holds that $\forall n \ge i$, $\hat{h}_v^{(n)} = c(v)$. Here N_i is the i-th *neighborhood hierarchy*, which contains the set of nodes that have the minimum number of neighbors in H[V'], where $V' = V \setminus \bigcup_{0 \le j < i} N_j$

御下 不良下 不良

- **Optimisations:** We have proposed 4 optimisations to make **Local-core** more efficient.
- **Parallisation:** We have proposed **Local-core(p)**, a shared-memory, data parallel programming adaptation of Local-core.
- **Generalised core model**: We have proposed a generalised hypergraph core model (*neighborhood, degree*)-core that simultaneously considers degree constraint and neighborhood constraint.

- Proposed Algorithms
- 3 Experimental Results
- Applications.
- 5 Conclusion and Future works.

Datasets

Table 1: Datasets: |V| #nodes, |E| #hyperedges, d(v) (mean) degree of a node, |e| (mean) cardinality of a hyperedges, |N(v)| (mean) #neighbors per node

	hypergraph	V	E	d(v)	e	N(v)
Syn.	bin4U	500	12424	99.4±8.5	4±0	225.3±15.5
	bin3U	500	16590	99.5±8	3±0	$164.1{\pm}11.6$
	pref3U	125329	250000	5.9 ± 915.9	3±0	4.5±412.4
Real	enron	4423	5734	6.8±32	5.2±5	25.3±44
	contact	242	12704	127 ± 55.2	$2.4{\pm}0.5$	68.7±26.6
	congress	1718	83105	426.2±475.8	8.8±6.8	494.7±248.6
	dblp	1836596	2170260	$4{\pm}11.6$	$3.4{\pm}1.8$	9±21.4
	aminer	27850748	17120546	2.3±5	3.7±2.6	8.4±24.1

Importance of Hypergraph h-index: Average error of hyp. and graph h-index on Enron

- T

Efficiency evaluation

Figure 5: (a)-(b) End-to-end (E2E) running time of our algorithms: Peel, E-Peel, Local-core(OPT), Local-core(P) with 64 Threads vs. those of baselines: Clique-Graph-Local and Distance-2 Bipartite-Graph-Local. End-to-end (E2E) running time = data structure initialization time (shaded with dark-black on top of each bar) + algorithm's execution time.

Our OpenMP parallel implementation **Local-core(P)** decomposes *aminer* hypergraph with 27M nodes, 17M hyperedges in 91 seconds.

- Proposed Algorithms
- 3 Experimental Results
- Applications.
- 5 Conclusion and Future works.

/⊒ ► < Ξ

Application 1: Densest subgraph discovery

• A new notion of densenset sub-hypergraph.

Volume-densest subhypergraph

The volume-densest subhypergraph is a subhypergraph which has the largest volume-density among all subhypergraphs. The volume-density $\rho^{N}[S]$ of a subset $S \subseteq V$ of nodes in a hypergraph $\rho^{N}[S] = \frac{\sum_{u \in S} |N_{S}(u)|}{|S|}$.

• Greedy approximation algorithm for volume-densest subhyp. recovery is $(d_{pair}(d_{card} - 2) + 2)$ -approximate, where hyperedge-cardinality and node-pair co-occurrence (# hyperedges containing that pair) are at most d_{card} and d_{pair} , resp.

Case study: Nashville Meetup Dataset

- The degree-densest subhyp. contains casual, frequent gatherings from only one socializing group. (Not informative)
- The degree-densest subgraph of the clique graph captures technical events arranged by diverse, yet niche activity groups (e.g. 5 participants on avg.) (Informative)
- The volume-densest subhyp. captures technical events arranged by diverse and vibrant activity groups (78 participants on avg.) (More informative)

Initially, all nodes except one called a *seed*- are at the *susceptible* state. The seed node is initially at the *infectious* state. At each time step, each infected node infects its susceptible neighbors with probability β and then becomes *immunized*. Once a node is immunized, it is never re-infected.

- Inner-cores produced by our decomposition contain influential spreaders.
- Our decomposition produces the best order of important nodes for deleting a limited number of them while causing the maximum intervention in spreading.

- Proposed Algorithms
- 3 Experimental Results
- Applications.
- 5 Conclusion and Future works.

/⊒ ► < Ξ

- We introduced neighborhood-cohesive core decomposition of hypergraphs.
- We proposed efficient algorithms for hypergraph core decomposition.
- Applications:
 - Densest subhypergraph extraction. Case studies show that our novel volume-densest subhypergraphs capture differently important meetup events, compared to both degree and clique graph decomposition-based densest subhypergraphs
 - **Diffusion intervention.** Our proposed decomposition is more effective than the degree and clique graph-based decompositions in intervening diffusion.

20 / 20

Future work.

Efficient algorithms for the new hypergraph-core model, (neighborhood, degree)-core